Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 170
Filtrar
1.
Healthc Manage Forum ; : 8404704241259652, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38881533

RESUMO

As Canadian policy-makers recognize the urgency for concerted actions to reduce plastics (e.g., Canada's involvement in the International Plastics Treaty negotiations, Zero Plastic Waste Strategy, and single-use plastics regulations), the healthcare sector must also consider a more sustainable plastics system. In this context, the potential for novel bioplastics to mitigate healthcare's substantial plastic waste problem must be carefully interrogated. Our analysis examines the complexities of bioplastics, highlighting the technical challenges of identifying legitimate sustainable alternatives, and the practical barriers for implementing bioplastics as substitutes for consumable plastics in healthcare. We focus on the Canadian healthcare sector and regulatory landscape with the insights gained being applicable to other sectors and countries. Given the limitations identified, the focus on reducing consumption should remain the priority.

2.
Environ Sci Technol ; 58(20): 8825-8834, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38712863

RESUMO

Flame retardants (FRs) are added to vehicles to meet flammability standards, such as US Federal Motor Vehicle Safety Standard FMVSS 302. However, an understanding of which FRs are being used, sources in the vehicle, and implications for human exposure is lacking. US participants (n = 101) owning a vehicle of model year 2015 or newer hung a silicone passive sampler on their rearview mirror for 7 days. Fifty-one of 101 participants collected a foam sample from a vehicle seat. Organophosphate esters (OPEs) were the most frequently detected FR class in the passive samplers. Among these, tris(1-chloro-isopropyl) phosphate (TCIPP) had a 99% detection frequency and was measured at levels ranging from 0.2 to 11,600 ng/g of sampler. TCIPP was also the dominant FR detected in the vehicle seat foam. Sampler FR concentrations were significantly correlated with average ambient temperature and were 2-5 times higher in the summer compared to winter. The presence of TCIPP in foam resulted in ∼4 times higher median air sampler concentrations in winter and ∼9 times higher in summer. These results suggest that FRs used in vehicle interiors, such as in seat foam, are a source of OPE exposure, which is increased in warmer temperatures.


Assuntos
Retardadores de Chama , Retardadores de Chama/análise , Humanos , Temperatura , Exposição Ambiental , Veículos Automotores
3.
ACS ES T Water ; 4(2): 492-499, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38356927

RESUMO

Plastic microbeads were widely used as exfoliants in personal care products (PCPs; e.g., hand/body washes) in North America, but restrictions were imposed on their use in PCPs in the U.S. (2017) and Canada (2018). We provide the first assessment of whether restrictions are effectively reducing microbeads entering surface waters. We examined their abundance, character, and trends in wastewater treatment plant (WWTP) effluents in Toronto, Canada, from 2016 to 2019, and in adjacent Lake Ontario surface waters (2015 and 2018), encompassing the period before and after the bans. Microbeads isolated from PCPs purchased in 2015 provided a visual morphological key with "irregular" and "spherical" microbead categories. Median concentrations of irregular microbeads, composed of polyethylene plastic, declined by up to 86% in WWTP effluents from 8.4 to 14.3 particles/m3 before to 2.0-2.2 particles/m3 after the bans, while those of spherical microbeads, predominantly synthetic/polyethylene wax, ranged within 0.5-2.3 particles/m3 and did not differ before and after the bans since, as nonplastic, they were not regulated. Similarly, amounts of irregular microbeads declined relative to spherical microbeads in Lake Ontario, indicating that product changes may be influencing observations in lake waters. The results suggest that the Canadian and U.S. restrictions effectively and rapidly reduced plastic microbeads entering waters via WWTPs.

4.
J Am Soc Mass Spectrom ; 35(2): 275-284, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38239096

RESUMO

Humans are exposed to differing levels of micro/nanoplastics (MNPs) through inhalation, but few studies have attempted to measure <1 µm MNPs in air, in part due to a paucity of analytical methods. We developed an approach to identify and quantify MNPs in indoor air using a novel pyrolysis gas chromatographic cyclic ion mobility mass spectrometer (pyr-GCxcIMS). Four common plastic types were targeted for identification, namely, (polystyrene (PS), polyethylene (PE), polypropylene (PP), and polymethyl methacrylate (PMMA). The method was applied to size-resolved particulate (56 nm to 18 µm) collected from two different indoor environments using a Micro-Orifice Uniform Deposit Impactors (MOUDI) model 110 cascade impactor. Comprehensive two-dimensional separation by GCxcIMS also enabled the retrospective analysis of other polymers and plastic additives. The mean concentrations of MNP particles with diameters of <10 µm and <2.5 µm in the laboratory were estimated to be 47 ± 5 and 27 ± 4 µg/m3, respectively. In the private residence, the estimated concentrations were 24 ± 3 and 16 ± 2 µg/m3. PS was the most abundant MNP type in both locations. Nontargeted screening revealed the presence of plastic additives, such as TDCPP (tris(1,3-dichloro-2-propyl)phosphate) whose abundance correlated with that of polyurethane (PU). This is consistent with their use as flame retardants in PU-based upholstered furniture and building insulation. This study provides evidence of indoor exposure to MNPs and underlines the need for further study of this route of exposure to MNPs and the plastic additives carried with them.

5.
J Expo Sci Environ Epidemiol ; 34(2): 376-385, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38129669

RESUMO

BACKGROUND: Evidence suggests that clothing can influence human exposure to semi-volatile organic compounds (SVOCs) through transdermal uptake and inhalation. OBJECTIVES: The objectives of this study were [1] to investigate the potential for clothing to function as a transport vector and secondary source of gas-phase SVOCs across indoor microenvironments, [2] to elucidate how clothing storage, wear, and laundering can influence the dynamics of transdermal uptake, and [3] to assess the potential for multiple human occupants to influence the multimedia dynamics of SVOCs indoors. METHODS: A computational modeling framework (ABICAM) was expanded, applied, and evaluated by simulating and augmenting two "real-world" chamber experiments. A primary strength of this framework was its representation of occupants and their clothing as unique entities with the potential for location changes. RESULTS: Estimates of transdermal uptake of diethyl phthalate (DEP) and di(n-butyl) phthalate (DnBP) were generally consistent with those extrapolated from measured concentrations of urinary metabolites, and those predicted by two other mechanistic models. ABICAM predicted that clean clothing (long sleeves, long pants, and socks, 100% cotton, 1 mm thick) readily accumulated DEP (6900-9700 µg) and DnBP (4500-4800 µg) from the surrounding chamber air over 6 h of exposure to average concentrations of 233 (DEP) and 114 (DnBP) µg·m-3. Because of their high capacity, clean clothing also effectively minimized transdermal uptake. In addition, ABICAM predicted that contaminated clothing functioned as a vector for transporting DEP and DnBP across indoor microenvironments and reemitted 13-80% (DEP) and 3-27% (DnBP) of the accumulated masses over 48 h. SIGNIFICANCE: Though the estimated secondary inhalation exposures from contaminated clothing were low compared to the corresponding primary exposures, these secondary exposures could be accentuated in other contexts, for example, involving longer timeframes of clothing storage, multiple occupants wearing contaminated clothing, and/or repeated instances of clothing-mediated transport of contaminants (e.g., from an occupational setting). IMPACT: This modeling study reaffirms the effectiveness of clean clothing in reducing transdermal uptake of airborne SVOCs and conversely, that contaminated clothing could be a source of SVOC exposure via transdermal uptake and by acting as a vector for transporting those contaminants to other locations.


Assuntos
Poluição do Ar em Ambientes Fechados , Vestuário , Compostos Orgânicos Voláteis , Humanos , Poluição do Ar em Ambientes Fechados/análise , Compostos Orgânicos Voláteis/análise , Ácidos Ftálicos , Simulação por Computador , Exposição por Inalação/análise , Exposição Ambiental/análise , Poluentes Atmosféricos/análise , Modelos Teóricos
6.
Environ Res ; 240(Pt 1): 117451, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37871788

RESUMO

Organophosphate ester flame retardants and plasticizers (OPEs) are common exposures in modern built environments. Toxicological models report that some OPEs reduce dopamine and serotonin in the brain. Deficiencies in these neurotransmitters are associated with anxiety and depression. We hypothesized that exposure to higher concentrations of OPEs in house dust would be associated with a greater risk of depression and stress in mothers across the prenatal and postpartum periods. We conducted a nested prospective cohort study using data collected on mothers (n = 718) in the CHILD Cohort Study, a longitudinal multi-city Canadian birth cohort (2008-2012). OPEs were measured in house dust sampled at 3-4 months postpartum. Maternal depression and stress were measured at 18 and 36 weeks gestation and 6 months and 1 year postpartum using the Centre for Epidemiologic Studies for Depression Scale (CES-D) and Perceived Stress Scale (PSS). We used linear mixed models to examine the association between a summed Z-Score OPE index and continuous depression and stress scores. In adjusted models, one standard deviation increase in the OPE Z-score index was associated with a 0.07-point (95% CI: 0.01, 0.13) increase in PSS score. OPEs were not associated with log-transformed CES-D (ß: 0.63%, 95% CI: -0.18%, 1.46%). The effect of OPEs on PSS score was strongest at 36 weeks gestation and weakest at 1 year postpartum. We observed small increases in maternal perceived stress levels, but not depression, with increasing OPEs measured in house dust during the prenatal and early postpartum period in this cohort of Canadian women. Given the prevalence of prenatal and postpartum anxiety and the ubiquity of OPE exposures, additional research is warranted to understand if these chemicals affect maternal mental health.


Assuntos
Retardadores de Chama , Gravidez , Humanos , Feminino , Retardadores de Chama/toxicidade , Plastificantes/toxicidade , Estudos de Coortes , Estudos Prospectivos , Poeira , Canadá/epidemiologia , Ésteres , Organofosfatos/toxicidade , Avaliação de Resultados em Cuidados de Saúde
7.
Environ Sci Technol Lett ; 10(4): 343-349, 2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-37970096

RESUMO

A suite of analytical techniques was used to obtain a comprehensive picture of per- and polyfluoroalkyl substances (PFAS) in selected Canadian food packaging used for fast foods (n = 42). Particle-induced gamma ray emission spectroscopy revealed that 55% of the samples contained <3580, 19% contained 3580-10 800, and 26% > 10 800 µg F/m2. The highest total F (1 010 000-1 300 000 µg F/m2) was measured in molded "compostable" bowls. Targeted analysis of 8 samples with high total F revealed 4-15 individual PFAS in each sample, with 6:2 fluorotelomer methacrylate (FTMAc) and 6:2 fluorotelomer alcohol (FTOH) typically dominating. Up to 34% of the total fluorine was released from samples after hydrolysis, indicating the presence of unknown precursors. Nontargeted analysis detected 22 PFAS from 6 different groups, including degradation products of FTOH. Results indicate the use of side-chain fluorinated polymers and suggest that these products can release short-chain compounds that ultimately can be transformed to compounds of toxicological concern. Analysis after 2 years of storage showed overall decreases in PFAS consistent with the loss of volatile compounds such as 6:2 FTMAc and FTOH. The use of PFAS in food packaging such as "compostable" bowls represents a regrettable substitution of single-use plastic food packaging.

9.
Environ Sci Technol ; 57(48): 19066-19077, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-37943968

RESUMO

Pollution by chemicals and waste impacts human and ecosystem health on regional, national, and global scales, resulting, together with climate change and biodiversity loss, in a triple planetary crisis. Consequently, in 2022, countries agreed to establish an intergovernmental science-policy panel (SPP) on chemicals, waste, and pollution prevention, complementary to the existing intergovernmental science-policy bodies on climate change and biodiversity. To ensure the SPP's success, it is imperative to protect it from conflicts of interest (COI). Here, we (i) define and review the implications of COI, and its relevance for the management of chemicals, waste, and pollution; (ii) summarize established tactics to manufacture doubt in favor of vested interests, i.e., to counter scientific evidence and/or to promote misleading narratives favorable to financial interests; and (iii) illustrate these with selected examples. This analysis leads to a review of arguments for and against chemical industry representation in the SPP's work. We further (iv) rebut an assertion voiced by some that the chemical industry should be directly involved in the panel's work because it possesses data on chemicals essential for the panel's activities. Finally, (v) we present steps that should be taken to prevent the detrimental impacts of COI in the work of the SPP. In particular, we propose to include an independent auditor's role in the SPP to ensure that participation and processes follow clear COI rules. Among others, the auditor should evaluate the content of the assessments produced to ensure unbiased representation of information that underpins the SPP's activities.


Assuntos
Conflito de Interesses , Ecossistema , Humanos , Poluição Ambiental , Biodiversidade
12.
Environ Sci Process Impacts ; 25(5): 893-900, 2023 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-37039315

RESUMO

Short-chain chlorinated paraffins (SCCPs) were listed for elimination under the Stockholm Convention in 2017 due to their persistence and toxicity. Although Canada and other Stockholm signatories have prohibited the manufacture, usage and import of SCCPs since 2013, they can still be detected at high concentrations in indoor dust. To identify the sources of the SCCPs in the Canadian indoor environment, short-, medium- and long-chain chlorinated paraffins (SCCPs, MCCPs, LCCPs, respectively) were measured using a sensitive LC-ESI-orbitrap method. SCCPs were detected in 84 of the 96 products purchased in Canada after 2013 (87.5%) including electronic devices, clothing, plastics (toys), and paintings. Concentrations of SCCPs were up to 0.93% (9.34 mg g-1). SCCPs were also detected in newly purchased toys at 0.005-2.02 mg g-1, indicating the potential for children's exposure. Profiles of chlorinated paraffins differed among categories of products. For example, C13-SCCPs were most common in toys, while electronic devices like headphones showed comparable concentrations of SCCPs and MCCPs. Additionally, four new carboxylate derivatives of CPs were detected in an electronic device sample. These are the first data to show the ubiquitous occurrences of SCCPs in a wide range of products currently marketed in Canada, suggesting continuing indoor exposure to SCCPs despite their prohibition.


Assuntos
Hidrocarbonetos Clorados , Parafina , Criança , Humanos , Parafina/análise , Hidrocarbonetos Clorados/análise , Monitoramento Ambiental/métodos , Canadá , Poeira/análise , China
13.
Nat Commun ; 14(1): 1175, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36859357

RESUMO

Cities are drivers of the global economy, containing products and industries that emit many chemicals. Here, we use the Multimedia Urban Model (MUM) to estimate atmospheric emissions and fate of organophosphate esters (OPEs) from 19 global mega or major cities, finding that they collectively emitted ~81,000 kg yr-1 of ∑10OPEs in 2018. Typically, polar "mobile" compounds tend to partition to and be advected by water, while non-polar "bioaccumulative" chemicals do not. Depending on the built environment and climate of the city considered, the same compound behaves like either a mobile or a bioaccumulative chemical. Cities with large impervious surface areas, such as Kolkata, mobilize even bioaccumulative contaminants to aquatic ecosystems. By contrast, cities with large areas of vegetation fix and transform contaminants, reducing loadings to aquatic ecosystems. Our results therefore suggest that urban design choices could support policies aimed at reducing chemical releases to the broader environment without increasing exposure for urban residents.

14.
Glob Chang Biol ; 29(12): 3240-3255, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36943240

RESUMO

Climate change, biodiversity loss, and chemical pollution are planetary-scale emergencies requiring urgent mitigation actions. As these "triple crises" are deeply interlinked, they need to be tackled in an integrative manner. However, while climate change and biodiversity are often studied together, chemical pollution as a global change factor contributing to worldwide biodiversity loss has received much less attention in biodiversity research so far. Here, we review evidence showing that the multifaceted effects of anthropogenic chemicals in the environment are posing a growing threat to biodiversity and ecosystems. Therefore, failure to account for pollution effects may significantly undermine the success of biodiversity protection efforts. We argue that progress in understanding and counteracting the negative impact of chemical pollution on biodiversity requires collective efforts of scientists from different disciplines, including but not limited to ecology, ecotoxicology, and environmental chemistry. Importantly, recent developments in these fields have now enabled comprehensive studies that could efficiently address the manifold interactions between chemicals and ecosystems. Based on their experience with intricate studies of biodiversity, ecologists are well equipped to embrace the additional challenge of chemical complexity through interdisciplinary collaborations. This offers a unique opportunity to jointly advance a seminal frontier in pollution ecology and facilitate the development of innovative solutions for environmental protection.


Assuntos
Ecossistema , Poluição Ambiental , Biodiversidade , Ecologia , Conservação dos Recursos Naturais , Mudança Climática
16.
Environ Sci Technol ; 57(4): 1568-1575, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36656107

RESUMO

Chemicals have improved the functionality and convenience of industrial and consumer products, but sometimes at the expense of human or ecological health. Existing regulatory systems have proven to be inadequate for assessing and managing the tens of thousands of chemicals in commerce. A different approach is urgently needed to minimize ongoing production, use, and exposures to hazardous chemicals. The premise of the essential-use approach is that chemicals of concern should be used only in cases in which their function in specific products is necessary for health, safety, or the functioning of society and when feasible alternatives are unavailable. To optimize the essential-use approach for broader implementation in the United States and Canada, we recommend that governments and businesses (1) identify chemicals of concern for essentiality assessments based on a broad range of hazard traits, going beyond toxicity; (2) expedite decision-making by avoiding unnecessary assessments and strategically asking up to three questions to determine whether the use of the chemical in the product is essential; (3) apply the essential-use approach as early as possible in the process of developing and assessing chemicals; and (4) engage diverse experts in identifying chemical uses and functions, assessing alternatives, and making essentiality determinations and share such information broadly. If optimized and expanded into regulatory systems in the United States and Canada, other policymaking bodies, and businesses, the essential-use approach can improve chemicals management and shift the market toward safer chemistries that benefit human and ecological health.


Assuntos
Substâncias Perigosas , Estados Unidos , Humanos , Medição de Risco , Canadá
17.
Environ Health ; 21(Suppl 1): 121, 2023 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-36635700

RESUMO

BACKGROUND: Understanding, characterizing, and quantifying human exposures to environmental chemicals is critical to protect public health. Exposure assessments are key to determining risks to the general population and for specific subpopulations given that exposures differ between groups. Exposure data are also important for understanding where interventions, including public policies, should be targeted and the extent to which interventions have been successful. In this review, we aim to show how inadequacies in exposure assessments conducted by polluting industries or regulatory agencies have led to downplaying or disregarding exposure concerns raised by communities; that underestimates of exposure can lead regulatory agencies to conclude that unacceptable risks are, instead, acceptable, allowing pollutants to go unregulated; and that researchers, risk assessors, and policy makers need to better understand the issues that have affected exposure assessments and how appropriate use of exposure data can contribute to health-protective decisions. METHODS: We describe current approaches used by regulatory agencies to estimate human exposures to environmental chemicals, including approaches to address limitations in exposure data. We then illustrate how some exposure assessments have been used to reach flawed conclusions about environmental chemicals and make recommendations for improvements. RESULTS: Exposure data are important for communities, public health advocates, scientists, policy makers, and other groups to understand the extent of environmental exposures in diverse populations. We identify four areas where exposure assessments need to be improved due to systemic sources of error or uncertainty in exposure assessments and illustrate these areas with examples. These include: (1) an inability of regulatory agencies to keep pace with the increasing number of chemicals registered for use or assess their exposures, as well as complications added by use of 'confidential business information' which reduce available exposure data; (2) the failure to keep assessments up-to-date; (3) how inadequate assumptions about human behaviors and co-exposures contribute to underestimates of exposure; and (4) that insufficient models of toxicokinetics similarly affect exposure estimates. CONCLUSION: We identified key issues that impact capacity to conduct scientifically robust exposure assessments. These issues must be addressed with scientific or policy approaches to improve estimates of exposure and protect public health.


Assuntos
Exposição Ambiental , Poluentes Ambientais , Humanos , Exposição Ambiental/efeitos adversos , Exposição Ambiental/prevenção & controle , Poluentes Ambientais/toxicidade , Poluentes Ambientais/análise , Saúde Pública , Política Pública , Incerteza , Medição de Risco
18.
Environ Health ; 21(Suppl 1): 132, 2023 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-36635734

RESUMO

The manufacture and production of industrial chemicals continues to increase, with hundreds of thousands of chemicals and chemical mixtures used worldwide, leading to widespread population exposures and resultant health impacts. Low-wealth communities and communities of color often bear disproportionate burdens of exposure and impact; all compounded by regulatory delays to the detriment of public health. Multiple authoritative bodies and scientific consensus groups have called for actions to prevent harmful exposures via improved policy approaches. We worked across multiple disciplines to develop consensus recommendations for health-protective, scientific approaches to reduce harmful chemical exposures, which can be applied to current US policies governing industrial chemicals and environmental pollutants. This consensus identifies five principles and scientific recommendations for improving how agencies like the US Environmental Protection Agency (EPA) approach and conduct hazard and risk assessment and risk management analyses: (1) the financial burden of data generation for any given chemical on (or to be introduced to) the market should be on the chemical producers that benefit from their production and use; (2) lack of data does not equate to lack of hazard, exposure, or risk; (3) populations at greater risk, including those that are more susceptible or more highly exposed, must be better identified and protected to account for their real-world risks; (4) hazard and risk assessments should not assume existence of a "safe" or "no-risk" level of chemical exposure in the diverse general population; and (5) hazard and risk assessments must evaluate and account for financial conflicts of interest in the body of evidence. While many of these recommendations focus specifically on the EPA, they are general principles for environmental health that could be adopted by any agency or entity engaged in exposure, hazard, and risk assessment. We also detail recommendations for four priority areas in companion papers (exposure assessment methods, human variability assessment, methods for quantifying non-cancer health outcomes, and a framework for defining chemical classes). These recommendations constitute key steps for improved evidence-based environmental health decision-making and public health protection.


Assuntos
Poluentes Ambientais , Humanos , Exposição Ambiental/efeitos adversos , Exposição Ambiental/prevenção & controle , Saúde Ambiental , Poluentes Ambientais/análise , Saúde Pública , Medição de Risco , Conferências de Consenso como Assunto
20.
Integr Environ Assess Manag ; 19(2): 422-435, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35686603

RESUMO

Microplastic categorization schemes are diverse, thereby posing challenges for cross-study comparisons. Further, categorization schemes are not necessarily aligned with and, thus, useful for applications such as source reduction initiatives. To address these challenges, we propose a hierarchical categorization approach that is "fit for purpose" to enable the use of a scheme that is tailored to the study's purpose and contains categories, which, if adopted, would facilitate interstudy comparison. The hierarchical categorization scheme is flexible to support various study purposes (e.g., to support regulation and toxicity assessment) and it aims to improve the consistency and comparability of microplastics categorization. Categorization is primarily based on morphology, supplemented by other identification methods as needed (e.g., spectroscopy). The use of the scheme was illustrated through a literature review aimed at critically evaluating the categories used for reporting microplastic morphologies in North American freshwater environments. Categorization and grouping schemes for microplastic particles were highly variable, with up to 19 different categories used across 68 studies, and nomenclature was inconsistent across particle morphologies. Our review demonstrates the necessity for a "fit for purpose" categorization scheme to guide the information needs of scientists and decision-makers for various research and regulatory objectives across global, regional, and local scales. Integr Environ Assess Manag 2023;19:422-435. © 2022 SETAC.


Assuntos
Microplásticos , Poluentes Químicos da Água , Plásticos , Poluentes Químicos da Água/análise , Monitoramento Ambiental/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...