Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 1383, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38360821

RESUMO

Cobalt oxyhydroxide (CoOOH) is a promising catalytic material for oxygen evolution reaction (OER). In the traditional CoOOH structure, Co3+ exhibits a low-spin state configuration ([Formula: see text]), with electron transfer occurring in face-to-face [Formula: see text] orbitals. In this work, we report the successful synthesis of high-spin state Co3+ CoOOH structure, by introducing coordinatively unsaturated Co atoms. As compared to the low-spin state CoOOH, electron transfer in the high-spin state CoOOH occurs in apex-to-apex [Formula: see text] orbitals, which exhibits faster electron transfer ability. As a result, the high-spin state CoOOH performs superior OER activity with an overpotential of 226 mV at 10 mA cm-2, which is 148 mV lower than that of the low-spin state CoOOH. This work emphasizes the effect of the spin state of Co3+ on OER activity of CoOOH based electrocatalysts for water splitting, and thus provides a new strategy for designing highly efficient electrocatalysts.

2.
Nat Commun ; 15(1): 337, 2024 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-38184634

RESUMO

Photocatalytic overall water splitting into hydrogen and oxygen is desirable for long-term renewable, sustainable and clean fuel production on earth. Metal sulfides are considered as ideal hydrogen-evolved photocatalysts, but their component homogeneity and typical sulfur instability cause an inert oxygen production, which remains a huge obstacle to overall water-splitting. Here, a distortion-evoked cation-site oxygen doping of ZnIn2S4 (D-O-ZIS) creates significant electronegativity differences between adjacent atomic sites, with S1 sites being electron-rich and S2 sites being electron-deficient in the local structure of S1-S2-O sites. The strong charge redistribution character activates stable oxygen reactions at S2 sites and avoids the common issue of sulfur instability in metal sulfide photocatalysis, while S1 sites favor the adsorption/desorption of hydrogen. Consequently, an overall water-splitting reaction has been realized in D-O-ZIS with a remarkable solar-to-hydrogen conversion efficiency of 0.57%, accompanying a ~ 91% retention rate after 120 h photocatalytic test. In this work, we inspire an universal design from electronegativity differences perspective to activate and stabilize metal sulfide photocatalysts for efficient overall water-splitting.

3.
Nat Commun ; 15(1): 260, 2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38177119

RESUMO

The electrochemical conversion of nitrate to ammonia is a way to eliminate nitrate pollutant in water. Cu-Co synergistic effect was found to produce excellent performance in ammonia generation. However, few studies have focused on this effect in high-entropy oxides. Here, we report the spin-related Cu-Co synergistic effect on electrochemical nitrate-to-ammonia conversion using high-entropy oxide Mg0.2Co0.2Ni0.2Cu0.2Zn0.2O. In contrast, the Li-incorporated MgCoNiCuZnO exhibits inferior performance. By correlating the electronic structure, we found that the Co spin states are crucial for the Cu-Co synergistic effect for ammonia generation. The Cu-Co pair with a high spin Co in Mg0.2Co0.2Ni0.2Cu0.2Zn0.2O can facilitate ammonia generation, while a low spin Co in Li-incorporated MgCoNiCuZnO decreases the Cu-Co synergistic effect on ammonia generation. These findings offer important insights in employing the synergistic effect and spin states inside for selective catalysis. It also indicates the generality of the magnetic effect in ammonia synthesis between electrocatalysis and thermal catalysis.

4.
ACS Appl Mater Interfaces ; 15(47): 54677-54691, 2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-37966967

RESUMO

Rational design is an important approach to consider in the development of low-dimensional hybrid organic-inorganic perovskites (HOIPs). In this study, 1-butyl-1-methyl pyrrolidinium (BMP), 1-(3-aminopropyl)imidazole (API), and 1-butyl-3-methyl imidazolium (BMI) serve as prototypical ionic liquid components in bismuth-based HOIPs. Element-sensitive X-ray absorption spectroscopy measurements of BMPBiBr4 and APIBiBr5 reveal distinct resonant excitation profiles across the N K-edges, where contrasting peak shifts are observed. These 1D-HOIPs exhibit a large Stokes shift due to the small polaron contribution, as probed by photoluminescence spectroscopy at room temperature. Interestingly, the incorporation of a small fraction of tin (Sn) into the APIBiBr5 (Sn/Bi mole ratio of 1:3) structure demonstrates a strong spectral weight transfer accompanied by a fast decay lifetime (2.6 ns). These phenomena are the direct result of Sn-substitution in APIBiBr5, decreasing the small polaron effect. By changing the active ionic liquid, the electronic interactions and optical responses can be moderately tuned by alteration of their intermolecular interaction between the semiconducting inorganic layers and organic moieties.

5.
Nat Commun ; 14(1): 7488, 2023 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-37980354

RESUMO

A coupled oxygen evolution mechanism (COM) during oxygen evolution reaction (OER) has been reported in nickel oxyhydroxides (NiOOH)-based materials by realizing eg* band (3d electron states with eg symmetry) broadening and light irradiation. However, the link between the eg* band broadening extent and COM-based OER activities remains unclear. Here, Ni1-xFexOOH (x = 0, 0.05, 0,2) are prepared to investigate the underlying mechanism governing COM-based activities. It is revealed that in low potential region, realizing stronger eg* band broadening could facilitate the *OH deprotonation. Meanwhile, in high potential region where the photon utilization is the rate-determining step, a stronger eg* band broadening would widen the non-overlapping region between dz2 and a1g* orbitals, thereby enhancing photon utilization efficiency. Consequently, a stronger eg* band broadening could effectuate more efficient OER activities. Moreover, we demonstrate the universality of this concept by extending it to reconstruction-derived X-NiOOH (X = NiS2, NiSe2, Ni4P5) with varying extent of eg* band broadening. Such an understanding of the COM would provide valuable guidance for the future development of highly efficient OER electrocatalysts.

6.
Sci Rep ; 13(1): 7262, 2023 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-37142605

RESUMO

An understanding on roles of excitons and plasmons is important in excitonic solar cells and photovoltaic (PV) technologies. Here, we produce new amorphous carbon (a-C) like films on Indium Tin Oxide (ITO) generating PV cells with efficiency three order of magnitude higher than the existing biomass-derived a-C. The amorphous carbon films are prepared from the bioproduct of palmyra sap with a simple, environmentally friendly, and highly reproducible method. Using spectroscopic ellipsometry, we measure simultaneously complex dielectric function, loss function as well as reflectivity and reveal coexistence of many-body resonant excitons and correlated-plasmons occurring due to strong electronic correlations. X-ray absorption and photoemission spectroscopies show the nature of electron and hole in defining the energy of the excitons and plasmons as a function of N or B doping. Our result shows new a-C like films and the importance of the coupling of resonant excitons and correlated plasmons in determining efficiency of photovoltaic devices.

7.
Angew Chem Int Ed Engl ; 62(21): e202218599, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-36929540

RESUMO

A fundamental understanding of surface reconstruction process is pivotal to developing highly efficient lattice oxygen oxidation mechanism (LOM) based electrocatalysts. Traditionally, the surface reconstruction in LOM based metal oxides is believed as an irreversible oxygen redox behavior, due to the much slower rate of OH- refilling than that of oxygen vacancy formation. Here, we found that the surface reconstruction in LOM based metal oxides is a spontaneous chemical reaction process, instead of an electrochemical reaction process. During the chemical process, the lattice oxygen atoms were attacked by adsorbed water molecules, leading to the formation of hydroxide ions (OH- ). Subsequently, the metal-site soluble atoms leached from the oxygen-deficient surface. This work also suggests that the enhancement of surface hydrophilicity could accelerate the surface reconstruction process. Hence, such a finding could add a new layer for the understanding of surface reconstruction mechanism.

8.
Adv Mater ; 35(8): e2209010, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36468620

RESUMO

Owing to its inherent non-trivial geometry, the unique structural motif of the recently discovered kagome topological superconductor AV3 Sb5 (A = K, Rb, Cs) is an ideal host of diverse topologically non-trivial phenomena, including giant anomalous Hall conductivity, topological charge order, charge density wave (CDW), and unconventional superconductivity. Despite possessing a normal-state CDW order in the form of topological chiral charge order and diverse superconducting gaps structures, it remains unclear how fundamental atomic-level properties and many-body effects including Fermi surface nesting, electron-phonon coupling, and orbital hybridization contribute to these symmetry-breaking phenomena. Here, the direct participation of the V3d-Sb5p orbital hybridization in mediating the CDW phase transition in CsV3 Sb5 is reported. The combination of temperature-dependent X-ray absorption and first-principles studies clearly indicates the inverse Star-of-David structure as the preferred reconstruction in the low-temperature CDW phase. The results highlight the critical role that Sb orbitals play and establish orbital hybridization as the direct mediator of the CDW states and structural transition dynamics in kagome unconventional superconductors. This is a significant step toward the fundamental understanding and control of the emerging correlated phases from the kagome lattice through the orbital interactions and provides promising approaches to novel regimes in unconventional orders and topology.

9.
Nat Commun ; 13(1): 3922, 2022 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-35798745

RESUMO

A large electromechanical response in ferroelectrics is highly desirable for developing high-performance sensors and actuators. Enhanced electromechanical coupling in ferroelectrics is usually obtained at morphotropic phase boundaries requiring stoichiometric control of complex compositions. Recently it was shown that giant piezoelectricity can be obtained in films with nanopillar structures. Here, we elucidate its origin in terms of atomic structure and demonstrate a different system with a greatly enhanced response. This is in non-stoichiometric potassium sodium niobate epitaxial thin films with a high density of self-assembled planar faults. A giant piezoelectric coefficient of ∼1900 picometer per volt is demonstrated at 1 kHz, which is almost double the highest ever reported effective piezoelectric response in any existing thin films. The large oxygen octahedral distortions and the coupling between the structural distortion and polarization orientation mediated by charge redistribution at the planar faults enable the giant electric-field-induced strain. Our findings demonstrate an important mechanism for realizing the unprecedentedly giant electromechanical coupling and can be extended to many other material functions by engineering lattice faults in non-stoichiometric compositions.

10.
Adv Mater ; 34(4): e2107439, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34699650

RESUMO

Ion adsorption inside electrified carbon micropores is pivotal for the operation of supercapacitors. Depending on the electrolyte, two main mechanisms have been identified so far, the desolvation of ions in solvents and the formation of superionic states in ionic liquids. Here, it is shown that upon confinement inside negatively charged micropores, transition-metal cations dissolved in water associate to form oligomer species. They are identified using in situ X-ray absorption spectroscopy. The cations associate one with each other via hydroxo bridging, forming ionic oligomers under the synergic effect of spatial confinement and Coulombic screening. The oligomers display sluggish dissociation kinetics and accumulate upon cycling, which leads to supercapacitor capacitance fading. They may be dissolved by applying a positive potential, so an intermittent reverse cycling strategy is proposed to periodically evacuate micropores and revivify the capacitance. These results reveal new insights into ion adsorption and structural evolution with their effects on the electrochemical performance, providing guidelines for designing advanced supercapacitors.

12.
Nano Lett ; 21(18): 7448-7456, 2021 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-34498884

RESUMO

A concept of spin plasmon, a collective mode of spin-density, in strongly correlated electron systems has been proposed since the 1930s. It is expected to bridge between spintronics and plasmonics by strongly confining the photon energy in the subwavelength scale within single magnetic-domain to enable further miniaturizing devices. However, spin plasmon in strongly correlated electron systems is yet to be realized. Herein, we present a new spin correlated-plasmon at room temperature in novel Mott-like insulating highly oriented single-crystalline gold quantum-dots (HOSG-QDs). Interestingly, the spin correlated-plasmon is tunable from the infrared to visible, accompanied by spectral weight transfer yielding a large quantum absorption midgap state, disappearance of low-energy Drude response, and transparency. Supported with theoretical calculations, it occurs due to an interplay of surprisingly strong electron-electron correlations, s-p hybridization and quantum confinement in the s band. The first demonstration of the high sensitivity of spin correlated-plasmon in surface-enhanced Raman spectroscopy is also presented.

13.
Nat Commun ; 12(1): 3992, 2021 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-34183651

RESUMO

Developing efficient and low-cost electrocatalysts for oxygen evolution reaction is crucial in realizing practical energy systems for sustainable fuel production and energy storage from renewable energy sources. However, the inherent linear scaling relation for most catalytic materials imposes a theoretical overpotential ceiling, limiting the development of efficient electrocatalysts. Herein, using modeled NaxMn3O7 materials, we report an effective strategy to construct better oxygen evolution electrocatalyst through tuning both lattice oxygen reactivity and scaling relation via alkali metal ion mediation. Specifically, the number of Na+ is linked with lattice oxygen reactivity, which is determined by the number of oxygen hole in oxygen lone-pair states formed by native Mn vacancies, governing the barrier symmetry between O-H bond cleavage and O-O bond formation. On the other hand, the presence of Na+ could have specific noncovalent interaction with pendant oxygen in *OOH to overcome the limitation from linear scaling relation, reducing the overpotential ceiling. Combining in situ spectroscopy-based characterization with first-principles calculations, we demonstrate that an intermediate level of Na+ mediation (NaMn3O7) exhibits the optimum oxygen evolution activity. This work provides a new rational recipe to develop highly efficient catalyst towards water oxidation or other oxidative reactions through tuning lattice oxygen reactivity and scaling relation.

14.
Nat Commun ; 12(1): 3701, 2021 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-34140505

RESUMO

Solar-driven hydrogen peroxide (H2O2) production presents unique merits of sustainability and environmental friendliness. Herein, efficient solar-driven H2O2 production through dioxygen reduction is achieved by employing polymeric carbon nitride framework with sodium cyanaminate moiety, affording a H2O2 production rate of 18.7 µmol h -1 mg-1 and an apparent quantum yield of 27.6% at 380 nm. The overall photocatalytic transformation process is systematically analyzed, and some previously unknown structural features and interactions are substantiated via experimental and theoretical methods. The structural features of cyanamino group and pyridinic nitrogen-coordinated soidum in the framework promote photon absorption, alter the energy landscape of the framework and improve charge separation efficiency, enhance surface adsorption of dioxygen, and create selective 2e- oxygen reduction reaction surface-active sites. Particularly, an electronic coupling interaction between O2 and surface, which boosts the population and prolongs the lifetime of the active shallow-trapped electrons, is experimentally substantiated.

15.
Small ; 17(7): e2005616, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33502094

RESUMO

Developing efficient catalysts for the ammonia oxidation reaction (AOR) is crucial for NH3 utilization as a large-scale energy carrier. This work reports a promising Ni-Cu-Fe-OOH material for ammonia oxidation, and density functional theory is used to investigate the AOR mechanism. It is revealed that the oxygen-atoms bonded with the metal-atom on the surface of electrode play an important role in AOR. By codoping Cu and Fe, the electron distribution around the oxygen-atom is affected, which helps to promote the occurrence of ammonia oxidation. The Ni-Cu-Fe-OOH material delivers one of the highest ammonia removal efficiency to date of ≈90% after 12 h. In addition, ≈55% of the initial ammonia is successfully degraded after 24 h in high ammonia concentration. Thus, this work reveals the mechanism of AOR that can provide new ideas to tailor more powerful and updated catalysts in the future.

16.
Angew Chem Int Ed Engl ; 60(13): 7418-7425, 2021 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-33372346

RESUMO

A rational design for oxygen evolution reaction (OER) catalysts is pivotal to the overall efficiency of water electrolysis. Much work has been devoted to understanding cation leaching and surface reconstruction of very active electrocatalysts, but little on intentionally promoting the surface in a controlled fashion. We now report controllable anodic leaching of Cr in CoCr2 O4 by activating the pristine material at high potential, which enables the transformation of inactive spinel CoCr2 O4 into a highly active catalyst. The depletion of Cr and consumption of lattice oxygen facilitate surface defects and oxygen vacancies, exposing Co species to reconstruct into active Co oxyhydroxides differ from CoOOH. A novel mechanism with the evolution of tetrahedrally coordinated surface cation into octahedral configuration via non-concerted proton-electron transfer is proposed. This work shows the importance of controlled anodic potential in modifying the surface chemistry of electrocatalysts.

17.
Nat Commun ; 11(1): 4647, 2020 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-32938941

RESUMO

Achieving a functional and durable non-platinum group metal-based methanol oxidation catalyst is critical for a cost-effective direct methanol fuel cell. While Ni(OH)2 has been widely studied as methanol oxidation catalyst, the initial process of oxidizing Ni(OH)2 to NiOOH requires a high potential of 1.35 V vs. RHE. Such potential would be impractical since the theoretical potential of the cathodic oxygen reduction reaction is at 1.23 V. Here we show that a four-coordinated nickel atom is able to form charge-transfer orbitals through delocalization of electrons near the Fermi energy level. As such, our previously reported periodically arranged four-six-coordinated nickel hydroxide nanoribbon structure (NR-Ni(OH)2) is able to show remarkable methanol oxidation activity with an onset potential of 0.55 V vs. RHE and suggests the operability in direct methanol fuel cell configuration. Thus, this strategy offers a gateway towards the development of high performance and durable non-platinum direct methanol fuel cell.

18.
Adv Mater ; 32(34): e2000153, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32643185

RESUMO

Charge localization is critical to the control of charge dynamics in systems such as perovskite solar cells, organic-, and nanostructure-based photovoltaics. However, the precise control of charge localization via electronic transport or defect engineering is challenging due to the complexity in reaction pathways and environmental factors. Here, charge localization in optimal-doped La1.85 Sr0.15 CuO4 thin-film on SrTiO3 substrate (LSCO/STO) is investigated, and also a high-energy plasmon is observed. Charge localization manifests as a near-infrared mid-gap state in LSCO/STO. This is ascribed to the interfacial hybridization between the Ti3d-orbitals of the substrate and O2p-orbitals of the film. The interfacial effect leads to significant changes in the many-body correlations and local-field effect. The local-field effect results in an inhomogeneous charge distribution, and due to perturbation by an external field, the high polarizability of this nonuniform charge system eventually generates the high-energy plasmon. Transformation of the electronic correlations in LSCO/STO is further demonstrated via temperature-dependent spectral-weight transfer. This study of charge localization in cuprates and interfacial hybridization provides important clues to their electronic structures and superconductive properties.

19.
Science ; 369(6501): 292-297, 2020 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-32675370

RESUMO

High-performance piezoelectric materials are critical components for electromechanical sensors and actuators. For more than 60 years, the main strategy for obtaining large piezoelectric response has been to construct multiphase boundaries, where nanoscale domains with local structural and polar heterogeneity are formed, by tuning complex chemical compositions. We used a different strategy to emulate such local heterogeneity by forming nanopillar regions in perovskite oxide thin films. We obtained a giant effective piezoelectric coefficient [Formula: see text] of ~1098 picometers per volt with a high Curie temperature of ~450°C. Our lead-free composition of sodium-deficient sodium niobate contains only three elements (Na, Nb, and O). The formation of local heterogeneity with nanopillars in the perovskite structure could be the basis for a general approach to designing and optimizing various functional materials.

20.
ACS Appl Mater Interfaces ; 12(3): 4114-4122, 2020 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-31927903

RESUMO

A controllable electronic manipulation in a frustrated magnetic system such as solution-based two-dimensional (2D) all-inorganic perovskites offers a possible route for their integrations with electronic and magnetic devices for their advanced applications. Here, we perform element-specific investigations of an emergent class of quasi-2D all-inorganic perovskites Cs2CuCl4-xBrx with (0 ≤ x ≤ 4) using a combination of synchrotron-radiation photoelectron techniques. Surface- and element-sensitive X-ray absorption spectroscopy spectra of Cu L2,3 edges indicate strong electronic transition that is largely influenced by their halogen content at room temperature. This implies that site-selective occupation largely dominates the electronic transition across the unoccupied states of these series since chlorine atoms possess a stronger electronegative character than bromine atoms. Moreover, the implication of halogen site is reflected in the valence band of Cl-rich copper perovskite in which the valence band edge is closer to Fermi energy (EF) than that of the Br-rich compound. Furthermore, X-ray magnetic circular dichroism spectra of mixed ratio and Br-rich compounds exhibit antiferromagnetism at room temperature. These site-specific magnetic-spectroscopic results are corroborated by density functional theory calculations. The strong electronic modulation and the local magnetic spectroscopy results in these solution-based and low-temperature-growth materials will pave the way toward energy- and cost-efficient perovskite devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...