Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Brain Res ; 1838: 148996, 2024 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-38744387

RESUMO

INTRODUCTION: The excessive fat accumulation in obesity, resulting from an unbalanced diet, can lead to metabolic and neurological disorders and increase the risk of developing anxiety and depression. AIM: Assess the impact of dietary intervention (DI) on the serotonergic system, brain-derived neurotrophic factor (BDNF) expression and behaviors of obese mice. METHODS: Male C57BL/6 mice, 5 weeks old, received a high-fat diet (HFD) for 10 weeks for the induction of obesity. After this period, for 8 weeks, half of these animals received a control diet (CD), group obese (OB) + control diet (OB + CD, n = 10), and another half continued being fed HFD, group obese + HFD (OB + HFD, n = 10). At the end of the eighth week of intervention, behavioral tests were performed (sucrose preference test, open field, novel object recognition, elevated plus maze and tail suspension). Body weight and food intake were assessed weekly. Visceral adiposity, the hippocampal and hypothalamic protein expression of BDNF, 5-HT1A (5-HT1A serotonin receptor) and TPH2 (key enzyme in serotonin synthesis), were evaluated after euthanasia. RESULTS: The dietary intervention involved changing from a HFD to a CD over an 8-week period, effectively reduced body weight gain, adiposity, and anhedonia-like behavior. In the OB + HFD group, we saw a lower sucrose preference and shorter traveled distance in the open field, along with increased pro-BDNF expression in the hypothalamus compared to the OB + CD mice. However, the levels of TPH2 and 5-HT1A remained unchanged. CONCLUSION: The HFD model induced both obesity and anhedonia, but the dietary intervention successfully improved these conditions.

2.
Neurochem Int ; 160: 105406, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35970295

RESUMO

Cannabis is the most widely used illegal drug during pregnancy, however, the effects of gestational exposure to Cannabis smoke (CS) on the central nervous system development remain uncharacterised. This study investigates the effects of maternal CS inhalation on brain function in the offspring. Pregnant mice were exposed daily to 5 min of CS during gestational days (GD) 5.5-17.5. On GD 18.5 half of the dams were euthanized for foetus removal. The offspring from the remaining dams were euthanized on postnatal days (PND) 20 and 60 for evaluation. Brain volume, cortex cell number, SOX2, histone-H3, parvalbumin, NeuN, and BDNF immunoreactivity were assessed in all groups. In addition, levels of NeuN, CB1 receptor, and BDNF expression were assessed and cortical primary neurons from rats were treated with Cannabis smoke extract (CSE) for assessment of cell viability. We found that male foetuses from the CS exposed group had decreased brain volume, whereas mice at PND 60 from the exposed group presented with increased brain volume. Olfactory bulb and diencephalon volume were found lower in foetuses exposed to CS. Mice at PND 60 from the exposed group had a smaller volume in the thalamus and hypothalamus while the cerebellum presented with a greater volume. Also, there was an increase in cortical BDNF immunoreactivity in CS exposed mice at PND 60. Protein expression analysis showed an increase in pro-BDNF in foetus brains exposed to CS. Mice at PND 60 presented an increase in mature BDNF in the prefrontal cortex (PFC) in the exposed group and a higher CB1 receptor expression in the PFC. Moreover, hippocampal NeuN expression was higher in adult animals from the exposed group. Lastly, treatment of cortical primary neurons with doses of CSE resulted in decreased cell viability. These findings highlight the potential negative neurodevelopmental outcomes induced by gestational CS exposure.


Assuntos
Cannabis , Alucinógenos , Drogas Ilícitas , Efeitos Tardios da Exposição Pré-Natal , Animais , Encéfalo/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Agonistas de Receptores de Canabinoides/farmacologia , Cannabis/efeitos adversos , Cannabis/metabolismo , Feminino , Histonas/metabolismo , Drogas Ilícitas/efeitos adversos , Drogas Ilícitas/metabolismo , Masculino , Camundongos , Parvalbuminas/metabolismo , Gravidez , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Ratos , Receptor CB1 de Canabinoide/metabolismo , Fumaça/efeitos adversos
3.
Neurosci Lett ; 764: 136239, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34509569

RESUMO

BACKGROUND: The consumption of a high-fat diet (HFD) during pregnancy and perinatal periods can lead to long-term effects in the offspring central nervous system, affecting pathways related to neurogenesis and behavior, and increasing predispositions to depressive and anxiety-like behaviors. Thus, this study aimed to investigate the effects of a maternal HFD on the hippocampi of adult offspring and behaviors related to anxiety and depression. METHODS: The protein and mRNA expression of the brain-derived neurotrophic factor (BDNF), Mash1, Notch1, Hes5, serotonin transporter (SERT), 5-HT1A serotonergic receptor (5-HT1A), tryptophan hydroxylase 2 (TPH2, key enzyme of serotonin synthesis), JNK and pJNK were analyzed in the hippocampi of male Swiss mice. Hippocampal serotonin levels were measured using ELISA. The lipid peroxidation, total oxidant status, total antioxidant status, and GSH/GSSG were evaluated as oxidative stress measures. For the behavioral analysis, the open field, elevated plus maze, and sucrose preference tests were used. RESULTS: Maternal HFD led to increased body weight in dams and their offspring, as well as altered body composition and LDL levels in the offspring. There were no alterations in oxidative stress or JNK phosphorylation. Hippocampal Mash1 and BDNF expression were altered in HFD offspring. The HFD offspring exhibited anhedonic behavior. CONCLUSION: These findings suggest that maternal HFD leads to long-term alterations in the offspring's neurotrophic systems, impairing their behavior.


Assuntos
Anedonia , Dieta Hiperlipídica/efeitos adversos , Ganho de Peso na Gestação , Hipocampo/metabolismo , Efeitos Tardios da Exposição Pré-Natal/psicologia , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/análise , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Fator Neurotrófico Derivado do Encéfalo/análise , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Modelos Animais de Doenças , Feminino , Humanos , Masculino , Fenômenos Fisiológicos da Nutrição Materna , Camundongos , Gravidez , Efeitos Tardios da Exposição Pré-Natal/etiologia , Efeitos Tardios da Exposição Pré-Natal/metabolismo
4.
Neurochem Int ; 139: 104781, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32652271

RESUMO

Maternal high-fat diet (HFD) consumption can promote a systemic inflammatory condition that may impair the offspring brain development, damaging memory and learning, when it reaches the hippocampus. This study aims to evaluate maternal HFD effects, during pregnancy and lactation, upon dams/mice offspring nutritional status, protein and gene expression of inflammatory pathway (JNK, pJNK and TNF-α), serotonin system molecules (Tryptophan Hydroxylase 2 (TPH2), key-enzyme of serotonin synthesis, serotonin transporter (SERT); 5-HT1A serotonergic receptor (5-HT1A)) and brain derived neurotrophic factor (BDNF) on recently weaned mice offspring hippocampus. Female Swiss mice were fed a control diet (CD, 11,5% fat) or a HFD (45.0% fat) from pre-mating to lactation. After weaning, the offspring received CD up to 28 post-natal days (PND28). Body weight and visceral adiposity (retroperitoneal and gonadal adipose tissue) of dams and offspring were measured. After euthanasia, the offspring hippocampus was dissected for evaluations of BDNF, inflammatory pathway and serotonergic system molecules protein and gene expression, through the techniques of Western Blotting, RTqPCR and ELISA. Our findings show that, during pregnancy, HFD-dams and HFD-offspring exhibited an increase in body weight gain and visceral adipose tissue compared to control animals. The hippocampus of HFD-offspring showed increased protein expression of TPH2, BDNF, pJNK and increased mRNA levels of TNF-α. However, the TPH2 increase in HFD-offspring did not alter hippocampal serotonin levels quantified through ELISA. Maternal HFD promoted an obesity phenotype in its offspring with increased body weight and visceral adiposity, increased protein and gene expression of the pro-inflammatory proteins pJNK and TNF-α. These changes were accompanied by increased TPH2 and BDNF protein expression. Thus, our findings show that maternal HFD during gestation and lactation increased pJNK and TNF-α expression in their offspring hippocampus indicating a pro-inflammatory state, with increased BDNF expression and alterations in its serotonergic system reflected by increased TPH2 expression.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/biossíntese , Dieta Hiperlipídica/efeitos adversos , Hipocampo/metabolismo , Mediadores da Inflamação/metabolismo , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Triptofano Hidroxilase/biossíntese , Adiposidade/fisiologia , Fatores Etários , Animais , Peso Corporal/fisiologia , Fator Neurotrófico Derivado do Encéfalo/genética , Dieta Hiperlipídica/tendências , Feminino , Regulação Enzimológica da Expressão Gênica , Masculino , Camundongos , Gravidez , Transdução de Sinais/fisiologia , Triptofano Hidroxilase/genética
5.
Physiol Behav ; 213: 112722, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31676261

RESUMO

High-fat diets (HFDs) during pregnancy may damage the neural development and emotional behavior of rat offspring. Therefore, we investigated the neurobehavioral development of rat offspring who were fed a control diet (CD) or an HFD with lard (HFD-lard) or canola oil (HFD-canola oil), during pregnancy. Offspring's neurodevelopment (somatic growth, physical maturation, and ontogenesis reflex) was assessed while they were suckling. The rat's levels of depression, anxiety, and aggression were assessed through forced swimming, elevation plus a maze or open field test, and a foot-shock test on postnatal days 60, 80, and 110, respectively. Maternal HFDs with lard or canola oil promoted rats' offspring during suckling. They had reduced body weight and growth, physical maturation delay (auditory conduit and eyes opening to both groups HFDs-lard and canola oil; ear unfolding and incisor eruption only HFD-lard) and an ontogenesis reflex (palm grasp/vibrissa placing to both groups HFDs-lard and canola oil, and free-fall righting only in HFD-lard). Negative geotaxis resulted in the faster development of the HFD-lard offspring. Furthermore, in adulthood, the HDFs-offspring were more likely to be overweight, have shorter swimming times in the swim test, greater susceptibility to anxiety with an increased time spent in the closed arm in the elevated plus-maze while spending less time in the open arm, and having a decreased number of crossings and rearing in the open field. On the other hand, aggressive-like behavior was not affected. Therefore, these findings indicate that maternal HFDs enriched with lard or canola oil during pregnancy can impair the neurodevelopment of rat offspring and can perhaps be associated with possible changes to the emotional behavior of adult offspring.


Assuntos
Ansiedade/fisiopatologia , Dieta Hiperlipídica/efeitos adversos , Transtornos do Neurodesenvolvimento/fisiopatologia , Sobrepeso/fisiopatologia , Efeitos Tardios da Exposição Pré-Natal/fisiopatologia , Agressão/fisiologia , Animais , Ansiedade/induzido quimicamente , Comportamento Animal , Depressão/fisiopatologia , Gorduras na Dieta/efeitos adversos , Comportamento Exploratório/fisiologia , Feminino , Masculino , Transtornos do Neurodesenvolvimento/induzido quimicamente , Sobrepeso/induzido quimicamente , Gravidez , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Óleo de Brassica napus/efeitos adversos , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...