Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Exp Gerontol ; 175: 112144, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36907475

RESUMO

AIMS: Obesity, aging, and physical training are factors influencing pancreatic functional and morphological parameters. Aiming to clarify the impact of the interaction of these factors, we analyzed the effect of therapeutic or lifelong physical training on body adiposity and pancreatic functional and morphological parameters of aged and obese rats. METHODS: 24 male Wistar rats were (initial age = 4 months and final age = 14 months) randomly divided into three aged and obese experimental groups (n = 8/group): untrained, therapeutic trained, and lifelong trained. Body adiposity, plasmatic concentration and pancreatic immunostaining of insulin, markers of tissue inflammation, lipid peroxidation, activity and immunostaining of antioxidant enzymes, and parameters of pancreatic morphology were evaluated. RESULTS: Lifelong physical training improved the body adiposity, plasmatic insulin concentration, and macrophage immunostaining in the pancreas. The animals submitted to therapeutic and lifelong training showed an increase in the density of the pancreatic islets; lower insulin, Nuclear Factor Kappa B (NF-κB), and Transforming Growth Factor beta (TGF-ß) immunostaining in the pancreatic parenchyma, as well as lower pancreatic tissue lipid peroxidation, lower fibrosis area, increased catalase and glutathione peroxidase (GPx) activity and increased heme oxygenase-1 (HO-1) immunostaining, with the greatest effect in the lifelong training group. CONCLUSION: Lifelong training promoted greater beneficial effects on the pancreatic functional and morphological parameters of aged and obese animals compared to therapeutic exercise.


Assuntos
Obesidade , Condicionamento Físico Animal , Ratos , Masculino , Animais , Ratos Wistar , Obesidade/metabolismo , Envelhecimento , Pâncreas/metabolismo , Insulina/metabolismo , Modelos Animais , Antioxidantes/farmacologia , Estresse Oxidativo
2.
World J Clin Oncol ; 12(10): 845-867, 2021 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-34733609

RESUMO

Cancer is the second leading cause of death worldwide and epidemiological projections predict growing cancer mortality rates in the next decades. Cancer has a close relationship with the immune system and, although Th17 cells are known to play roles in the immune response against microorganisms and in autoimmunity, studies have emphasized their roles in cancer pathogenesis. The Th17 immune response profile is involved in several types of cancer including urogenital, respiratory, gastrointestinal, and skin cancers. This type of immune response exerts pro and antitumor functions through several mechanisms, depending on the context of each tumor, including the protumor angiogenesis and exhaustion of T cells and the antitumor recruitment of T cells and neutrophils to the tumor microenvironment. Among other factors, the paradoxical behavior of Th17 cells in this setting has been attributed to its plasticity potential, which makes possible their conversion into other types of T cells such as Th17/Treg and Th17/Th1 cells. Interleukin (IL)-17 stands out among Th17-related cytokines since it modulates pathways and interacts with other cell profiles in the tumor microenvironment, which allow Th17 cells to prevail in tumors. Moreover, the IL-17 is able to mediate pro and antitumor processes that influence the development and progression of various cancers, being associated with variable clinical outcomes. The understanding of the relationship between the Th17 immune response and cancer as well as the singularities of carcinogenic processes in each type of tumor is crucial for the identification of new therapeutic targets.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...