Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Hazard Mater ; 471: 134243, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38657506

RESUMO

Iron-magnetic nanoparticles (Fe-NMPs) are widely used in environmental remediation, while porphyrin-based hybrid materials anchored to silica-coated Fe3O4-nanoparticles (Fe3O4-NPs) have been used for water disinfection purposes. To assess their safety on plants, especially concerning potential environmental release, it was investigated for the first time, the impact on plants of a silica-coated Fe3O4-NPs bearing a porphyrinic formulation (FORM) - FORM@NMP. Additionally, FORM alone and the magnetic nanoparticles without FORM anchored (NH2@NMP) were used for comparison. Wheat (Triticum aestivum L.) was chosen as a model species and was subjected to three environmentally relevant doses during germination and tiller development through root application. Morphological, physiological, and metabolic parameters were assessed. Despite a modest biomass decrease and alterations in membrane properties, no major impairments in germination or seedling development were observed. During tiller phase, both Fe3O4-NPs increased leaf length, and photosynthesis exhibited varied impacts: both Fe3O4-NPs and FORM alone increased pigments; only Fe3O4-NPs promoted gas exchange; all treatments improved the photochemical phase. Regarding oxidative stress, lipid peroxidation decreased in FORM and FORM@NMP, yet with increased O2-• in FORM@NMP; total flavonoids decreased in NH2@NMP and antioxidant enzymes declined across all materials. Phenolic profiling revealed a generalized trend towards a decrease in flavones. In conclusion, these nanoparticles can modulate wheat physiology/metabolism without apparently inducing phytotoxicity at low doses and during short-time exposure. ENVIRONMENTAL IMPLICATION: Iron-magnetic nanoparticles are widely used in environmental remediation and fertilization, besides of new applications continuously being developed, making them emerging contaminants. Soil is a major sink for these nanoparticles and their fate and potential environmental risks in ecosystems must be addressed to achieve more sustainable environmental applications. Furthermore, as the reuse of treated wastewater for agricultural irrigation is being claimed, it is of major importance to disclose the impact on crops of the nanoparticles used for wastewater decontamination, such as those proposed in this work.


Assuntos
Germinação , Porfirinas , Triticum , Triticum/crescimento & desenvolvimento , Triticum/efeitos dos fármacos , Triticum/metabolismo , Germinação/efeitos dos fármacos , Fotossíntese/efeitos dos fármacos , Nanopartículas de Magnetita/toxicidade , Nanopartículas de Magnetita/química , Plântula/efeitos dos fármacos , Plântula/crescimento & desenvolvimento , Plântula/metabolismo , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Dióxido de Silício/toxicidade , Dióxido de Silício/química , Estresse Oxidativo/efeitos dos fármacos
2.
Antioxidants (Basel) ; 13(1)2024 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-38247501

RESUMO

Olive leaves are an abundant by-product of olive oil production. Olive leaf extracts (OLEs) are rich in polyphenols, which can be used for health benefits. As polyphenols are the main antioxidant molecules in plants, plants typically increase their polyphenol content when exposed to drought stress. However, the phenolic profile of OLEs can vary in relation to the origin and variety of the plant material. In this work, olive leaf extracts from three different Italian olive cultivars (Giarraffa, Leccino, and Maurino) both exposed and not exposed to drought stress were studied in terms of antioxidant properties and profile, intestinal permeation, and protection against oxidative stress of human umbilical vein endothelial cells (HUVECs), since HUVECs are considered a model to study a wide range of diseases. OLEs from stressed Maurino and Giarraffa plants showed the highest increase in antioxidant capacity compared to controls. The phenolic profile of Maurino' was mainly increased by water deficit, with a large increase in the compounds oleuropein and luteolin-7-O-rutinoside. All tested extracts exposed to a water deficit protected HUVECs against oxidative stress by reducing ROS production, and this effect was more pronounced in OLEs from Giarraffa and Maurino exposed to drought stress compared to all other extracts. Finally, OLE from the stressed Giarraffa group showed a higher apparent permeability of antioxidant molecules than that of Maurino.

3.
Plants (Basel) ; 12(7)2023 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-37050097

RESUMO

Enhanced drought, more frequent rainfall events and increased inter-annual variability of precipitation are the main trends of climate expected for the Mediterranean. Drought is one of the most important stressors for plants and significantly impacts plant communities causing changes in plant composition and species dominance. Through an experiment under controlled conditions, we assessed the response of Mediterranean species from different functional groups (annual grass, annual forb, annual legume, and perennial shrub) to moderate and severe water deficit. Changes in plant traits (leaf dry matter), biomass and physiology (water status, photosynthesis, pigments, and carbohydrate) were evaluated. The studied species differed in their response to water deficit. Ornithopus compressus, the legume, showed the strongest response, particularly under severe conditions, decreasing leaf relative water content (RWC), pigments and carbohydrates. The grass, Agrostis pourreti and the forb, Tolpis barbata, maintained RWC, indicating a higher ability to cope with water deficit. Finally, the shrub, Cistus salviifolius, had the lowest response to stress, showing a higher ability to cope with water deficit. Despite different responses, plant biomass was negatively affected by severe water deficit in all species. These data provide background for predicting plant diversity and species composition of Mediterranean grasslands and Montado under climate change conditions.

4.
Front Plant Sci ; 14: 1144678, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36909429

RESUMO

Polyploidy has important ecological effects, including ploidy-mediated effects on morphology, breeding system and ecological tolerances. However, there is still little comprehensive research available to test its adaptive significance and its role in driving distributional patterns. This work aimed to assess the contribution of genome duplications to ecological divergence using an experimental approach with the diploid-tetraploid Jasione maritima polyploid complex. We explored if individuals with different ploidy differ in their tolerance to water deficit and if this may contribute to explaining the distribution patterns along a latitudinal gradient in the northwest Iberian Peninsula. For that, we used three cytogenetic entities: diploids and established tetraploids collected in natural populations along a latitudinal gradient, and neotetraploids synthesized from diploid populations after treatments with colchicine. Thirty plants from each of the nine populations were grown under controlled conditions with half randomly assigned to the water deficit treatment, and half used as control. We determined experimental plants' response by measuring fitness-related parameters, such as above and belowground biomass, plant water status, photosynthetic efficiency and pigments, membrane stability, antioxidant capacity and sugars content. Our data shows that biomass, chlorophyll content, photochemical quenching (qP) and non-photochemical quenching (NPQ) in neotetraploids and established tetraploids were significantly higher than in diploids and that these differences could be attributed to genome duplications. In response to the water deficit, diploids seem to use a strategy of avoidance, whereas tetraploids seem to employ the strategy of tolerance to overcome water deficit stress, which appears equally efficient. Additionally, we did not observe a response pattern along the latitudinal gradient of the distributional range of the J. maritima complex. The results indicate that the response to water deficit is population dependent. Further studies are necessary to understand the role of ploidy in explaining the distribution patterns of the J. maritima complex.

5.
Plants (Basel) ; 12(3)2023 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-36771576

RESUMO

Metabolomics is a powerful tool in diverse research areas, enabling an understanding of the response of organisms, such as plants, to external factors, their resistance and tolerance mechanisms against stressors, the biochemical changes and signals during plant development, and the role of specialized metabolites. Despite its advantages, metabolomics is still underused in areas such as nano-plant interactions. Nanoparticles (NPs) are all around us and have a great potential to improve and revolutionize the agri-food sector and modernize agriculture. They can drive precision and sustainability in agriculture as they can act as fertilizers, improve plant performance, protect or defend, mitigate environmental stresses, and/or remediate soil contaminants. Given their high applicability, an in-depth understanding of NPs' impact on plants and their mechanistic action is crucial. Being aware that, in nano-plant interaction work, metabolomics is much less addressed than physiology, and that it is lacking a comprehensive review focusing on metabolomics, this review gathers the information available concerning the metabolomic tools used in studies focused on NP-plant interactions, highlighting the impact of metal-based NPs on plant metabolome, metabolite reconfiguration, and the reprogramming of metabolic pathways.

6.
Int J Mol Sci ; 23(21)2022 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-36362399

RESUMO

Environmental stress triggered by climate change can alter the plant's metabolite profile, which affects its physiology and performance. This is particularly important in medicinal species because their economic value depends on the richness of their phytocompounds. We aimed to characterize how water deficit modulated the medicinal species Melia azedarach's lipophilic profile and antioxidant status. Young plants were exposed to water deficit for 20 days, and lipophilic metabolite profile and the antioxidant capacity were evaluated. Leaves of M. azedarach are rich in important fatty acids and oleamide. Water deficit increased the radical scavenging capacity, total phenol, flavonoids, and catechol pools, and the accumulation of ß-sitosterol, myo-inositol, succinic acid, sucrose, d-glucose and derivatives, d-psicofuranose, d-(+)-fructofuranose, and the fatty acids stearic, α-linolenic, linoleic and palmitic acids. These responses are relevant to protecting the plant against climate change-related stress and also increase the nutritional and antioxidant quality of M. azedarach leaves.


Assuntos
Melia azedarach , Plantas Medicinais , Melia azedarach/química , Antioxidantes , Água , Extratos Vegetais/química , Compostos Fitoquímicos , Folhas de Planta , Ácidos Graxos
7.
Toxics ; 10(4)2022 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-35448432

RESUMO

Abiotic stresses, such as those induced by climatic factors or contaminants, and biotic stresses prompted by phytopathogens and pests inflict tremendous losses in agriculture and are major threats to worldwide food security. In addition, climate changes will exacerbate these factors as well as their negative impact on crops. Drought, salinity, heavy metals, pesticides, and drugs are major environmental problems that need deep attention, and effective and sustainable strategies to mitigate their effects on the environment need to be developed. Besides, sustainable solutions for agrocontrol must be developed as alternatives to conventional agrochemicals. In this sense, nanotechnology offers promising solutions to mitigate environmental stress effects on plants, increasing plant tolerance to the stressor, for the remediation of environmental contaminants, and to protect plants against pathogens. In this review, nano-sized TiO2 (nTiO2) and ZnO (nZnO) are scrutinized, and their potential to ameliorate drought, salinity, and xenobiotics effects in plants are emphasized, in addition to their antimicrobial potential for plant disease management. Understanding the level of stress alleviation in plants by these nanomaterials (NM) and relating them with the application conditions/methods is imperative to define the most sustainable and effective approaches to be adopted. Although broad-spectrum reviews exist, this article provides focused information on nTiO2 and nZnO for improving our understanding of the ameliorative potential that these NM show, addressing the gaps in the literature.

8.
Plants (Basel) ; 11(5)2022 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-35270150

RESUMO

The depletion of the stratospheric ozone layer due to natural and/or anthropogenic causes decreases the amount of UV-B radiation filtered, and consequently increases the risk of potential damage to organisms. In the Mediterranean region, high UV-B indices are frequent. Even for species typical of this region, such as the olive tree, the progressive increase in UV-B radiation represents a threat. This work aimed to understand how high UV-B radiation modulates the phenolic and lipophilic profile of olive varieties, and identify metabolites that enhance olive stress tolerance. Two Italian olive varieties were subjected to chronic UV-B stress, and leaves were analyzed by gas and liquid chromatography. The results indicated that the most representative phenolic and lipophilic compounds of Giarraffa and Olivastra Seggianese were readjusted in response to UV-B stress. The Giarraffa variety seemed better suited to prolonged UV-B stress, possibly due to the higher availability of flavonoids that could help control oxidative damage, and the accumulation of hydroxycinnamic acid derivatives that could provide strong UV-B shield protection. In addition, this variety contained higher levels of fatty acids (e.g., palmitic, α-linolenic, and stearic acids), which can help to maintain membrane integrity and accumulate more sorbitol (which may serve as an osmoprotectant or act a free-radical scavenger), terpenes, and long-chain alkanes, providing higher protection against UV-B stress.

9.
Plants (Basel) ; 11(4)2022 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-35214887

RESUMO

Cork oak (Quercus suber) is a species native to Mediterranean areas and its adaptation to the increasingly prevalent abiotic stresses, such as soil salinization, remain unknown. In sequence with recent studies on salt stress response in the leaf, it is fundamental to uncover the plasticity of roots directly exposed to high salinity to better understand how Q. suber copes with salt stress. In the present study we aimed to unveil the antioxidants and key-genes involved in the stress-responses (early vs. later responses) of Q. suber roots exposed to high salinity. Two-month-old Q. suber plants were watered with 300 mM NaCl solution and enzymatic and non-enzymatic antioxidants, lipid peroxidation and the relative expression of genes related to stress response were analysed 8 h and 6 days after salt treatment. After an 8 h of exposure, roots activated the expression of QsLTI30 and QsFAD7 genes involved in stress membrane protection, and QsRAV1 and QsCZF1 genes involved in tolerance and adaptation. As a result of the continued salinity stress (6 days), lipid peroxidation increased, which was associated with an upregulation of QsLTI30 gene. Moreover, other protective mechanisms were activated, such as the upregulation of genes related to antioxidant status, QsCSD1 and QsAPX2, and the increase of the antioxidant enzyme activities of superoxide dismutase, catalase, and ascorbate peroxidase, concomitantly with total antioxidant activity and phenols. These data suggest a response dependent on the time of salinity exposure, leading Q. suber roots to adopt protective complementary strategies to deal with salt stress.

10.
Front Plant Sci ; 13: 1024243, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36618626

RESUMO

Global climate change-induced abiotic stresses (e.g., drought, salinity, extreme temperatures, heavy metals, and UV radiation) have destabilized the fragile agroecosystems and impaired plant performance and thereby reducing crop productivity and quality. Biostimulants, as a promising and eco-friendly approach, are widely used to address environmental concerns and fulfill the need for developing sustainable/modern agriculture. Current knowledge revealed that plant and animal derived stimulants (e.g., seaweeds and phytoextracts, humic substances, and protein hydrolysate) as well as microbial stimulants (e.g., plant beneficial bacteria or fungi) have great potential to elicit plant tolerance to various abiotic stresses and thus enhancing plant growth and performance-related parameters (such as root growth/diameter, flowering, nutrient use efficiency/translocation, soil water holding capacity, and microbial activity). However, to successfully implement biostimulant-based agriculture in the field under changing climate, the understanding of agricultural functions and action mechanism of biostimulants coping with various abiotic stresses at physicochemical, metabolic, and molecular levels is needed. Therefore, this review attempts to unravel the underlying mechanisms of action mediated by diverse biostimulants in relation to abiotic stress alleviation as well as to discuss the current challenges in their commercialization and implementation in agriculture under changing climate conditions.

11.
Int J Mol Sci ; 22(20)2021 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-34681874

RESUMO

In recent decades, atmospheric pollution led to a progressive reduction of the ozone layer with a consequent increase in UV-B radiation. Despite the high adaptation of olive trees to the Mediterranean environment, the progressive increase of UV-B radiation is a risk factor for olive tree cultivation. It is therefore necessary to understand how high levels of UV-B radiation affect olive plants and to identify olive varieties which are better adapted. In this study we analyzed two Italian olive varieties subjected to chronic UV-B stress. We focused on the effects of UV-B radiation on RubisCO, in terms of quantity, enzymatic activity and isoform composition. In addition, we also analyzed changes in the activity of antioxidant enzymes (SOD, CAT, GPox) to get a comprehensive picture of the antioxidant system. We also evaluated the effects of UV-B on the enzyme sucrose synthase. The overall damage at biochemical level was also assessed by analyzing changes in Hsp70, a protein triggered under stress conditions. The results of this work indicate that the varieties (Giarraffa and Olivastra Seggianese) differ significantly in the use of specific antioxidant defense systems, as well as in the activity and isoform composition of RubisCO. Combined with a different use of sucrose synthase, the overall picture shows that Giarraffa optimized the use of GPox and opted for a targeted choice of RubisCO isoforms, in addition to managing the content of sucrose synthase, thereby saving energy during critical stress points.


Assuntos
Antioxidantes/metabolismo , Olea/metabolismo , Olea/efeitos da radiação , Proteínas de Plantas/metabolismo , Ribulose-Bifosfato Carboxilase/metabolismo , Enzimas/metabolismo , Glucosiltransferases/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Itália , Peroxidação de Lipídeos/efeitos da radiação , Malondialdeído/metabolismo , Microscopia Eletrônica de Transmissão , Olea/citologia , Folhas de Planta/citologia , Folhas de Planta/efeitos da radiação , Raios Ultravioleta
12.
Molecules ; 26(17)2021 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-34500810

RESUMO

In recent years, more attention has been paid to natural sources of antioxidants. Flavonoids are natural substances synthesized in several parts of plants that exhibit a high antioxidant capacity. They are a large family, presenting several classes based on their basic structure. Flavonoids have the ability to control the accumulation of reactive oxygen species (ROS) via scavenger ROS when they are formed. Therefore, these antioxidant compounds have an important role in plant stress tolerance and a high relevance in human health, mainly due to their anti-inflammatory and antimicrobial properties. In addition, flavonoids have several applications in the food industry as preservatives, pigments, and antioxidants, as well as in other industries such as cosmetics and pharmaceuticals. However, flavonoids application for industrial purposes implies extraction processes with high purity and quality. Several methodologies have been developed aimed at increasing flavonoid extraction yield and being environmentally friendly. This review presents the most abundant natural flavonoids, their structure and chemical characteristics, extraction methods, and biological activity.


Assuntos
Flavonoides/química , Compostos Fitoquímicos/química , Animais , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Antineoplásicos/química , Antineoplásicos/farmacologia , Antioxidantes/química , Antioxidantes/farmacologia , Flavonoides/farmacologia , Química Verde/métodos , Humanos , Compostos Fitoquímicos/farmacologia
13.
Plants (Basel) ; 10(7)2021 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-34206665

RESUMO

Inadequate quantity and quality of pollen reaching the stigmas decreases the sexual reproductive output of plants, compromising yield. Still, the current extent of pollen limitation affecting yield (i.e., pollination deficits) is poorly quantified. This study is aimed at quantifying pollination deficits in kiwifruit orchards, a dioecious plant with a fruit caliber and market value largely dependent on pollination services. For that, we set up a pollination experiment and quantified services and yield provided by current pollination vectors, and under optimal pollination, over two years in a total of twenty-three orchards covering the kiwifruit production range in Portugal. We characterized nine fruit traits and used: (1) fruit weight to calculate pollination deficits and relate them with pollinator diversity and abundance, and environmental variables; and (2) production values, fruit caliber, and market values to calculate economic impact of pollination deficits. Results showed that pollination deficits were variable in time and space and were significantly and negatively correlated with pollinator abundance, while the opposite pattern was obtained for production, supporting the notion that a higher pollinator's abundance is related to lower pollination deficits and higher yields. Understanding the factors affecting pollination deficits is crucial to depict the need for nature-based solutions promoting pollinators and to resort to management practices assisting pollination.

14.
Plants (Basel) ; 10(5)2021 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-34063679

RESUMO

Daily UV-supplementation during the plant fruiting stage of tomato (Solanum lycopersicum L.) growing indoors may produce fruits with higher nutraceutical value and better acceptance by consumers. However, it is important to ensure that the plant's performance during this stage is not compromised by the UV supplement. We studied the impact of UV-A (1 and 4 h) and UV-B (2 and 5 min) on the photosynthesis of greenhouse-grown tomato plants during the fruiting/ripening stage. After 30 d of daily irradiation, UV-B and UV-A differently interfered with the photosynthesis. UV-B induced few leaf-necrotic spots, and effects are more evidenced in the stimulation of photosynthetic/protective pigments, meaning a structural effect at the Light-Harvesting Complex. UV-A stimulated flowering/fruiting, paralleled with no visible leaf damages, and the impact on photosynthesis was mostly related to functional changes, in a dose-dependent manner. Both UV-A doses decreased the maximum quantum efficiency of photosystem II (Fv/Fm), the effective efficiency of photosystem II (ΦPSII), and gas exchange processes, including net carbon assimilation (PN). Transcripts related to Photosystem II (PSII) and RuBisCO were highly stimulated by UV supplementation (mostly UV-A), but the maintenance of the RuBisCO protein levels indicates that some protein is also degraded. Our data suggest that plants supplemented with UV-A activate adaptative mechanisms (including increased transcription of PSII peptides and RuBisCO), and any negative impacts on photosynthesis do not compromise the final carbohydrate balances and plant yield, thus becoming a profitable tool to improve precision agriculture.

15.
Acta Neurochir Suppl ; 131: 249-253, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33839853

RESUMO

Plateau waves are recurrent phenomena observed in traumatic brain injury (TBI) patients, characterised by an increase in intracranial pressure (ICP) above 40 mmHg combined with an almost zero arterial blood pressure (ABP) variation and, hence, a decrease in cerebral perfusion pressure (CPP). A raised ICP for a long period of time, namely plateau waves, can lead to a secondary brain injury. Due to the impaired cerebral autoregulation mechanism these TBI patients present, they are admitted to neurocritical care units (NCCUs) to be under continuous multimodal monitoring, which allows a correct diagnosis for each patient. Plateau waves can end naturally by activating a vasoconstriction mechanism which decreases the amount of blood available in the brain. Alternatively, the phenomenon can end with therapeutic treatment.In this sense, the present study consists in the development of an algorithm capable of automatically detecting plateau waves using offline data, i.e. data already collected from patients. This creates an extra tool which allows for faster detection of events to assist their identification and final diagnosis. Despite the additional steps that can be included to improve the algorithm, the results show good performance, and thus it may be applied in NCCUs.


Assuntos
Lesões Encefálicas Traumáticas , Pressão Intracraniana , Pressão Arterial , Pressão Sanguínea , Circulação Cerebrovascular , Humanos , Hipertensão Intracraniana/diagnóstico
16.
Plants (Basel) ; 10(4)2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33916326

RESUMO

Extreme climate events are increasingly frequent, and the 2017 summer was particularly critical in the Mediterranean region. Olive is one of the most important species of this region, and these climatic events represent a threat to this culture. However, it remains unclear how olive trees adjust the antioxidant enzymatic system and modulate the metabolite profile under field stress conditions. Leaves from two distinct adjacent areas of an olive orchard, one dry and the other hydrated, were harvested. Tree water status, oxidative stress, antioxidant enzymes, and phenolic and lipophilic metabolite profiles were analyzed. The environmental conditions of the 2017 summer caused a water deficit in olive trees of the dry area, and this low leaf water availability was correlated with the reduction of long-chain alkanes and fatty acids. Hydrogen peroxide (H2O2) and superoxide radical (O2•-) levels increased in the trees collected from the dry area, but lipid peroxidation did not augment. The antioxidant response was predominantly marked by guaiacol peroxidase (GPOX) activity that regulates the H2O2 harmful effect and by the action of flavonoids (luteolin-7-O-glucuronide) that may act as reactive oxygen species scavengers. Secoiridoids adjustments may also contribute to stress regulation. This work highlights for the first time the protective role of some metabolite in olive trees under field drought conditions.

17.
Phytochemistry ; 185: 112695, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33581598

RESUMO

The frequency of combined stress events is increasing due to climate change and represents a new threat to olive (Olea europaea) culture. How olive plants modulate their profile of metabolites under multiple stressing agents remains to unveil, although several metabolites affect plants' resilience, and olive production and quality. Young olive plants were exposed to a water deficit (WD) for 30 days and then exposed to a shock of heat and high UVB-radiation (WDHS+UVB treatment) for 2 days. Then, plants were re-watered and grown under optimal conditions (recovery) for 30 days. Leaves were collected after stress and recovery, analysed by liquid and gas chromatography, and the lipophilic and phenolic profiles were characterized. Except for the oleuropein derivatives, the qualitative metabolite profile was similar during stress and recovery. Metabolite increases or decreases in response to stress were stronger when WD was followed by WDHS+UVB treatment. Phenolic compounds (luteolin-7-O-glucoside, quercetin-3-O-rutinoside, apigenin-7-O-glucoside, chrysoeriol-7-O-glucoside, kaempferol derivatives, oleuropein, and lucidumoside C) were the most involved after WD and WDHS+UVB, possibly acting as reactive oxygen species (ROS) scavengers. Lipophilic compounds were more relevant during the recovery period. The catabolism of fatty acids and carbohydrates may provide the necessary energy for plant performance reestablishment, and sterols, long-chain alkanes, and terpenes metabolic pathways may be shifted for the production of compounds with a more important stress protection role. This work highlights for the first time that tolerance mechanisms activated by WD in olive plants are related to metabolite changes, that are adjusted when other stressors are overlapped (WDHS+UVB), and also help the plants recover. This metabolites' plasticity represents an essential contribution to understanding how dry-farming olive orchards may deal with drought combined with high UV-B or heat.


Assuntos
Olea , Secas , Fenóis/análise , Folhas de Planta/química , Árvores
18.
Plants (Basel) ; 9(12)2020 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-33291829

RESUMO

Given the economical importance of the olive tree it is essential to study its responses to stress agents such as excessive UV-B radiation, to understand the defense mechanisms and to identify the varieties that are able to cope with it. In the light of the analysis carried out in this study, we argue that UV-B radiation represents a dangerous source of stress for the olive tree, especially in the current increasingly changing environmental conditions. Both the varieties considered (Giarraffa and Olivastra Seggianese), although resistant to the strong treatment to which they were exposed, showed, albeit in different ways and at different times, evident effects. The two varieties have different response times and the Giarraffa variety seems better suited to prolonged UV-B stress, possible due to a more efficient and quick activation of the antioxidant response (e.g., flavonoids use to counteract reactive oxygen species) and because of its capacity to maintain the photosynthetic efficiency as well as a relatively higher content of mannitol. Moreover, pigments reduction after a long period of UV-B exposure can also be an adaptation mechanism triggered by Giarraffa to reduce energy absorption under UV-B stress. Olivastra Seggianese seems less suited to overcome UV-B stress for a long period (e.g., higher reduction of Fv/Fm) and has a higher requirement for sugars (e.g., glucose) possible to counteract stress and to restore energy.

19.
Front Plant Sci ; 11: 591911, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33281852

RESUMO

Drought and salinity are among the most important environmental factors that hampered agricultural productivity worldwide. Both stresses can induce several morphological, physiological, biochemical, and metabolic alterations through various mechanisms, eventually influencing plant growth, development, and productivity. The responses of plants to these stress conditions are highly complex and depend on other factors, such as the species and genotype, plant age and size, the rate of progression as well as the intensity and duration of the stresses. These factors have a strong effect on plant response and define whether mitigation processes related to acclimation will occur or not. In this review, we summarize how drought and salinity extensively affect plant growth in agriculture ecosystems. In particular, we focus on the morphological, physiological, biochemical, and metabolic responses of plants to these stresses. Moreover, we discuss mechanisms underlying plant-microbe interactions that confer abiotic stress tolerance.

20.
J Agric Food Chem ; 68(41): 11339-11349, 2020 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-32955863

RESUMO

To understand how olives reconfigure their metabolism to face stress shock episodes, plants from the economically relevant olive (Olea europaea cv. Cobrançosa) were exposed to high UV-B radiation (UV-B, 12 kJ m-2 d-1) or heat shock (HS, 40 °C) for two consecutive days. The physiological responses and some important lipophilic compounds were evaluated immediately (day 0) and 30 days after UV-B or HS episodes. Both treatments induced a reduction of the olive physiological performance, particularly increasing cell membrane damages and proline pool and at the same time reducing chlorophyll levels, the quantum yield of photosystem II (ΦPSII), and the efficiency of excitation energy capture by open photosystem II (PSII) reaction centers (F'v/F'm). Nevertheless, the HS episode caused more adverse effects, additionally reducing the pool of protective pigments (carotenoids) and the maximum efficiency of PSII (with F0 increase). In the UV-B treatment, despite the higher lipid peroxidation, the activation of some stress protective mechanisms (e.g., increase of NPQ and carotenoids and remobilization of some metabolites, such as phytol and proline) might have contributed to avoiding photoinhibition. Thirty days after stress relief, the performance of olives from both treatments recovered similarly, in part due to the metabolites' adjustments that contributed to strengthened stress protection (an increase of long-chain alkanes) and provided energy (through the use of soluble sugars, mannitol, and myo-inositol) for re-establishment. Other metabolites, like anthocyanins and squalene, also have an important role in responding specifically to HS or UV-B recovery for helping in the oxidative damage control. These data contribute to understanding how young olive plants may deal with climatic episodes when being transferred from nurseries to field orchards, under the actual context of climate change.


Assuntos
Olea/metabolismo , Olea/efeitos da radiação , Clorofila/metabolismo , Temperatura Alta , Peroxidação de Lipídeos/efeitos da radiação , Estresse Oxidativo/efeitos da radiação , Fotossíntese/efeitos da radiação , Complexo de Proteína do Fotossistema II/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...