Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 341: 139988, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37669720

RESUMO

The performance of a pilot-scale boron-doped diamond (BDD) reactor through a numerical analysis of reaction rate parameters and enhanced mass transfer has been investigated. The main objective of this research is to evaluate the efficiency of the reactor in mineralizing and degrading caffeine as an emerging contaminant. Based on the kinetic mechanisms and mass transport correlations reported in the literature, two reaction rate kinetic models for caffeine degradation are proposed and analyzed. The models consider different electrolytes (NaCl and Na2SO4) and applied current densities. The kinetic fitting process utilizes the gradient-maximal electrochemical approach, together with orthogonal placement methods, fourth-order Runge-Kutta (RK4) methods, and Nelder & Mead methods for optimization of kinetic parameters and spatial discretization of the material balance. Experimental data obtained from a factorial design with four factors and two levels (24) validate the proposed kinetic models. Caffeine degradation is achieved with NaCl and Na2SO4 electrolytes at concentrations of 60 ppm and 100 ppm, respectively. The corresponding applied loads are 1.5 AhL-1 and 3 AhL-1. Na2SO4 exhibits superior performance with a total organic carbon (TOC) removal efficiency of 99.13%, while NaCl achieves 31.47% mineralization. The behavior of caffeine degradation under the operational and scale conditions demonstrates that NaCl, as a support electrolyte, enables controlled charge transfer (current density) during the degradation process. In contrast, Na2SO4 as a support electrolyte introduces a mixed control of charge and mass transfer. The pilot-scale kinetic parameters obtained in this study provide valuable insights into the support electrolyte dynamics and current density dynamics in BDD-based Electrooxidation (EO) systems, particularly in complex matrix applications. Furthermore, the observed electrical consumption supports the potential application of EO as a viable technology for industrial-scale tertiary wastewater treatment, specifically for caffeine removal.


Assuntos
Cafeína , Cloreto de Sódio , Eletricidade , Indústrias , Cinética
2.
Environ Sci Pollut Res Int ; 29(28): 42120-42129, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33983609

RESUMO

This work aims to integrate several hydrogen peroxide (H2O2) activation mechanisms, photolysis (UVC irradiation), chemical electron transfer (TiO2-P25 photocatalysis), and reaction with TiO2-P25 in dark conditions, for reactive oxygen species (ROS) generation towards the removal of contaminants of emerging concern (CECs), in a single unit operated in continuous-flow mode. An H2O2 stock solution is fed by the lumen side of a tubular ceramic membrane, delivering the oxidant to the (i) catalyst immobilized in the membrane shell-side and (ii) annular reaction zone (ARZ, space between membrane shell-side and outer quartz tube) where CECs contaminated water flows with a helix trajectory, being activated by UV light provided by four lamps placed symmetrically around the reactor. First, the effect of several parameters in the removal of a CEC target molecule, amoxicillin (AMX), was evaluated using a synthetic solution ([AMX]inlet = 2.0 mg L-1): (i) light source (UVA or UVC radiation), (ii) H2O2 dose, (iii) H2O2 injection method (radial permeation vs. upstream injection), and (iv) number of TiO2-P25 layers deposited on the membrane. The UVC/H2O2/TiO2 system with radial addition of H2O2 (20 mg L-1) and 9-TiO2-P25 layers provided the highest AMX removal efficiency (72.2 ± 0.5%) with a UV fluence of 45 mJ cm-2 (residence time of 4.6 s), due to the synergic effect of four mechanisms: (i) AMX photolysis, (ii) H2O2 photocleavage, (iii) TiO2-P25 photoactivation, and (iv) chemical reactions between H2O2 and TiO2-P25. The urban wastewater matrix showed a negative effect on AMX removal (~44%) due to the presence of ROS scavengers and light-filtering species.


Assuntos
Águas Residuárias , Poluentes Químicos da Água , Amoxicilina , Cerâmica , Peróxido de Hidrogênio/química , Oxirredução , Espécies Reativas de Oxigênio , Titânio/química , Raios Ultravioleta , Águas Residuárias/química , Poluentes Químicos da Água/análise
3.
Environ Sci Pollut Res Int ; 28(19): 24079-24091, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33439445

RESUMO

This work proposes a novel approach for the coupling of ozonation and Fenton processes using a new prototype of a high rotation bubble reactor (HRBR), which improves utilization of the ozone and hydrogen peroxide through bubble generation and axial and radial dispersion of the flow. The HRBR integrates the rotor and the diffuser in the same device facilitating the generation and dispersion of the ozone bubbles inside the reaction tank. Thus, the mass transfer to the liquid phase is enhanced. Most of the experiments were carried out under neutral pH and 1580 rpm of agitation during the 20 min of reaction. Total ibuprofen degradation was achieved within 20 min of operation for most of the couplings and individual processes evaluated. It was successfully demonstrated that the HRBR can be used as a reactive system for heterogeneous Fenton and ozonation coupling because it presents a high synergy. For the ozonation process, the reactor also displayed a good performance because the residual ozone in the gas is lower than 0.4 mg/L, which indicates that there is a suitable ozone utilization. Ibuprofen degradation by other processes like oxidation direct by H2O2 and heterogeneous Fenton was 28.0% and 73.1%, respectively. It was determined that the reaction rate, synergy, OUI (ozone utilized index), and consumption of electrical energy (EE/O) of the coupled processes could be improved by using the HRBR depending on the experimental conditions.


Assuntos
Poluentes Ambientais , Ozônio , Poluentes Químicos da Água , Peróxido de Hidrogênio , Compostos de Ferro , Minerais , Oxirredução , Rotação
4.
Chemosphere ; 263: 128049, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33297062

RESUMO

This work presents a disruptive approach to promote highly-efficient photo-Fenton process at neutral pH under continuous mode operation. The system consists of a tube-in-tube membrane reactor designed for continuous-flow titration of low iron doses to the annular reaction zone (ARZ). A concentrated acidic ferrous ion (Fe2+) solution is fed by the lumen-side of the membrane, permeating through the membrane pores (inside-out mode), being dosed and uniformly delivered to the membrane shell-side. Polluted water, containing amoxicillin (AMX) and oxidant (H2O2), flows continuously in the reactor annulus (space between the membrane shell-side and an outer quartz tube). The catalyst radial dispersion is enhanced by the helicoidal movement of water around the membrane shell-side, efficiently promoting its contact with H2O2 and UV light. The efficiency of photochemical and photocatalytic oxidation was evaluated as a function of catalyst dose, catalyst injection mode (radial permeation vs injection upstream from the reactor inlet), light source (UVA vs UVC) and aqueous solution matrix (synthetic vs real wastewater). At steady-state, photo-Fenton reaction with Fe2+ radial addition, driven by UVC light, showed the highest AMX removal for synthetic (∼65%, removal rate of 44 µMAMX/min, using [Fe2+]ARZ = 2 mg/L and [H2O2]inlet = 10 mg/L) and real municipal wastewaters (∼45%, removal rate of 31 µMAMX/min, with [Fe2+]ARZ = 5 mg/L and [H2O2]inlet = 40 mg/L), with a residence time of only 4.6 s.


Assuntos
Águas Residuárias , Poluentes Químicos da Água , Peróxido de Hidrogênio , Concentração de Íons de Hidrogênio , Ferro , Oxirredução , Poluentes Químicos da Água/análise
5.
Data Brief ; 25: 104151, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31304218

RESUMO

WO3/TiO2 is a composite photocatalyst that is being widely used in heterogeneous photocatalysis because it presents better photocatalytic properties than TiO2. For example, the probability of recombination of the electron/hole pairs is diminished and a more range of the solar spectrum is used for its excitation. However, this depend of variables such as tungsten oxide concentration, calcination temperature and synthesis method. This work is focused in establish the effect of WO3 on the morphological and structural characteristics of TiO2. WO3/TiO2 was synthesized by sol-gel method at different calcination temperatures and at different concentrations of tungsten oxide. The surface area, the possible transition between valence band and conduction band, particle size, elemental analysis and crystallography were examined through the BET, DRS, SEM-EDS and XRD analysis.

6.
Photochem Photobiol Sci ; 18(4): 920-928, 2019 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-30758378

RESUMO

The present work reports the use of a flotation cell as a prospective reactor for ozonation and the intensification of ozonation (catalytic ozonation and photocatalytic ozonation). The effect of the pH, ozone concentration and loading catalyst was investigated. The performance of the flotation cell was compared with that of conventional reactors used in ozonation through the ozone utilized index (OUI), which was proposed in this work and relates the amount of ozone supplied to the system per milligram of degraded pollutant. The flotation cell has the lowest OUI, which indicates that the ozone supplied is highly consumed. It was found that the modified flotation cell is an efficient reactor for ozonation, catalytic ozonation and photocatalytic ozonation processes because total diclofenac degradation was achieved in a short time, mass transfer limitations were not found (Ha = 7.26), and it presented a relatively low energy consumption (1.15 kW h m-3).

7.
Photochem Photobiol Sci ; 18(4): 897-904, 2019 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-30457636

RESUMO

This work reports the improvement in the photon absorption and degradation of acetaminophen (ACF) and diclofenac (DFC) by photosensitizing TiO2 with two types of dyes Eosin Y (Ey) and Rhodamine B (RhB). Experimental tests were carried out in a solar simulator for three hours for different systems and both pollutants. The influences of the TiO2 concentration (100, 200 and 800 mg L-1) and the catalyst-dye ratio (2%, 5% and 10%) were investigated. The degradation of the compounds was higher in the presence of TiO2-Ey compared to the TiO2-RhB and TiO2 for both pharmaceutical compounds, which was attributed to the anionic nature of Ey. DFC total degradation was achieved using 100 mg L-1 of catalyst loading and 10% of catalyst-dye ratio and the highest ACF degradation (71%) was obtained at 800 mg L-1 of catalyst loading and 5% of catalyst-dye ratio. The photon absorption was studied for both dyes using the six-flux absorption scattering model (SFM) for estimating the LVRPA (local volumetric rate of photon absorption). This was done by modifying the apparent optical thickness equation. It was found that the presence of dye in the photocatalytic systems considerably increases the LVRPA. The rate coefficients for the degradation of pharmaceutical compounds in the presence of the organic dyes were also obtained.


Assuntos
Acetaminofen/isolamento & purificação , Corantes/química , Diclofenaco/isolamento & purificação , Fotólise , Titânio/química , Poluentes Químicos da Água/isolamento & purificação , Catálise , Amarelo de Eosina-(YS)/química , Luz , Rodaminas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA