Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Microbiol ; 13: 1068328, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36519174

RESUMO

Infectious Bursal Disease Virus (IBDV) is the causative agent of an immunosuppressive disease that affects domestic chickens (Gallus gallus) severely affecting poultry industry worldwide. IBDV infection is characterized by a rapid depletion of the bursal B cell population by apoptosis and the atrophy of this chief lymphoid organ. Previous results from our laboratory have shown that exposure of infected cells to type I IFN leads to an exacerbated apoptosis, indicating an important role of IFN in IBDV pathogenesis. It has been described that recognition of the dsRNA IBDV genome by MDA5, the only known cytoplasmic pattern recognition receptor for viral RNA in chickens, leads to type I IFN production. Here, we confirm that TRIM25, an E3 ubiquitin ligase that leads to RIG-I activation in mammalian cells, significantly contributes to positively regulate MDA5-mediated activation of the IFN-inducing pathway in chicken DF-1 cells. Ectopic expression of chTRIM25 together with chMDA5 or a deletion mutant version exclusively harboring the CARD domains (chMDA5 2CARD) enhances IFN-ß and NF-ĸB promoter activation. Using co-immunoprecipitation assays, we show that chMDA5 interacts with chTRIM25 through the CARD domains. Moreover, chTRIM25 co-localizes with both chMDA5 and chMDA5 2CARD, but not with chMDA5 mutant proteins partially or totally lacking these domains. On the other hand, ablation of endogenous chTRIM25 expression reduces chMDA5-induced IFN-ß and NF-ĸB promoter activation. Interestingly, ectopic expression of either wild-type chTRIM25, or a mutant version (chTRIM25 C59S/C62S) lacking the E3 ubiquitin ligase activity, restores the co-stimulatory effect of chMDA5 in chTRIM25 knockout cells, suggesting that the E3-ubiquitin ligase activity of chTRIM25 is not required for its downstream IFN-ß and NF-ĸB activating function. Also, IBDV-induced expression of IFN-ß, Mx and OAS genes was reduced in chTRIM25 knockout as compared to wild-type cells, hence contributing to the enhancement of IBDV replication. Enhanced permissiveness to replication of other viruses, such as avian reovirus, Newcastle disease virus and vesicular stomatitis virus was also observed in chTRIM25 knockout cells. Additionally, chTRIM25 knockout also results in reduced MAVS-induced IFN-ß promoter stimulation. Nonetheless, similarly to its mammalian counterpart, chTRIM25 overexpression in wild-type DF-1 cells causes the degradation of ectopically expressed chMAVS.

3.
J Virol ; 95(5)2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33328313

RESUMO

Infectious bursal disease virus (IBDV), the best characterized member of the Birnaviridae family, is a highly relevant avian pathogen causing both acute and persistent infections in different avian hosts. Here, we describe the establishment of clonal, long-term, productive persistent IBDV infections in DF-1 chicken embryonic fibroblasts. Although virus yields in persistently-infected cells are exceedingly lower than those detected in acutely infected cells, the replication fitness of viruses isolated from persistently-infected cells is higher than that of the parental virus. Persistently-infected DF-1 and IBDV-cured cell lines derived from them do not respond to type I interferon (IFN). High-throughput genome sequencing revealed that this defect is due to mutations affecting the IFNα/ß receptor subunit 2 (IFNAR2) gene resulting in the expression of IFNAR2 polypeptides harbouring large C-terminal deletions that abolish the signalling capacity of IFNα/ß receptor complex. Ectopic expression of a recombinant chicken IFNAR2 gene efficiently rescues IFNα responsiveness. IBDV-cured cell lines derived from persistently infected cells exhibit a drastically enhanced susceptibility to establishing new persistent IBDV infections. Additionally, experiments carried out with human HeLa cells lacking the IFNAR2 gene fully recapitulate results obtained with DF-1 cells, exhibiting a highly enhanced capacity to both survive the acute IBDV infection phase and to support the establishment of persistent IBDV infections. Results presented here show that the inactivation of the JAK-STAT signalling pathway significantly reduces the apoptotic response induced by the infection, hence facilitating the establishment and maintenance of IBDV persistent infections.IMPORTANCE Members of the Birnaviridae family, including infectious bursal disease virus (IBDV), exhibit a dual behaviour, causing acute infections that are often followed by the establishment of life-long persistent asymptomatic infections. Indeed, persistently infected specimens might act as efficient virus reservoirs, hence potentially contributing to virus dissemination. Despite the key importance of this biological trait, information about mechanisms triggering IBDV persistency is negligible. Our report evidences the capacity of IBDV, a highly relevant avian pathogen, to establishing long-term, productive, persistent infections in both avian and human cell lines. Data presented here provide novel and direct evidence about the crucial role of type I IFNs on the fate of IBDV-infected cells and their contribution to controlling the establishment of IBDV persistent infections. The use of cell lines unable to respond to type I IFNs opens a promising venue to unveiling additional factors contributing to IBDV persistency.

4.
Nat Commun ; 11(1): 6056, 2020 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-33247105

RESUMO

Viral control of programmed cell death relies in part on the expression of viral analogs of the B-cell lymphoma 2 (Bcl2) protein known as viral Bcl2s (vBcl2s). vBcl2s control apoptosis by interacting with host pro- and anti-apoptotic members of the Bcl2 family. Here, we show that the carboxyl-terminal hydrophobic region of herpesviral and poxviral vBcl2s can operate as transmembrane domains (TMDs) and participate in their homo-oligomerization. Additionally, we show that the viral TMDs mediate interactions with cellular pro- and anti-apoptotic Bcl2 TMDs within the membrane. Furthermore, these intra-membrane interactions among viral and cellular proteins are necessary to control cell death upon an apoptotic stimulus. Therefore, their inhibition represents a new potential therapy against viral infections, which are characterized by short- and long-term deregulation of programmed cell death.


Assuntos
Apoptose , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteínas Virais/química , Proteínas Virais/metabolismo , Sequência de Aminoácidos , Linhagem Celular , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Doxorrubicina/farmacologia , Fluorescência , Humanos , Interações Hidrofóbicas e Hidrofílicas , Ligação Proteica/efeitos dos fármacos , Domínios Proteicos , Multimerização Proteica/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-bcl-2/química
5.
PLoS One ; 14(7): e0219428, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31306441

RESUMO

Autophagy is a conserved eukaryotic process that mediates lysosomal degradation of cytoplasmic macromolecules and damaged organelles, also exerting an important role in the elimination of intracellular pathogens. Despite the antiviral role of autophagy, many studies suggest that some positive-stranded RNA viruses exploit this pathway to facilitate their own replication. In this study, we demonstrate that the equine torovirus Berne virus (BEV), the prototype member of the Torovirus genus (Coronaviridae Family, Nidovirales Order), induces autophagy at late times post-infection. Conversion of microtubule associated protein 1B light chain 3 (LC3) from cytosolic (LC3 I) to the membrane associated form (LC3 II), a canonical marker of autophagosome formation, is enhanced in BEV infected cells. However, neither autophagy induction, via starvation, nor pharmacological blockade significantly affect BEV replication. Similarly, BEV infection is not altered in autophagy deficient cells lacking either Beclin 1 or LC3B protein expression. Unexpectedly, the cargo receptor p62, a selective autophagy receptor, aggregates within the region where the BEV main protease (Mpro) localizes. This finding, coupled with observation that BEV replication also induces ER stress at the time when selective autophagy is taking place, suggests that the autophagy pathway is activated in response to the hefty accumulation of virus-encoded polypeptides during the late phase of BEV infection.


Assuntos
Autofagia , Infecções por Torovirus/virologia , Torovirus/fisiologia , Replicação Viral , Animais , Autofagossomos , Proteína Beclina-1/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Células HEK293 , Cavalos , Humanos , Lisossomos/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Fagossomos/metabolismo , Transdução de Sinais , Infecções por Torovirus/fisiopatologia
6.
J Virol ; 92(11)2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29540594

RESUMO

Infectious bursal disease virus (IBDV) belongs to the Birnaviridae family and is the etiological agent of a highly contagious and immunosuppressive disease (IBD) that affects domestic chickens (Gallus gallus). IBD or Gumboro disease leads to high rates of morbidity and mortality of infected animals and is responsible for major economic losses to the poultry industry worldwide. IBD is characterized by a massive loss of IgM-bearing B lymphocytes and the destruction of the bursa of Fabricius. The molecular bases of IBDV pathogenicity are still poorly understood; nonetheless, an exacerbated cytokine immune response and B cell depletion due to apoptosis are considered main factors that contribute to the severity of the disease. Here we have studied the role of type I interferon (IFN) in IBDV infection. While IFN pretreatment confers protection against subsequent IBDV infection, the addition of IFN to infected cell cultures early after infection drives massive apoptotic cell death. Downregulation of double-stranded RNA (dsRNA)-dependent protein kinase (PKR), tumor necrosis factor alpha (TNF-α), or nuclear factor κB (NF-κB) expression drastically reduces the extent of apoptosis, indicating that they are critical proteins in the apoptotic response induced by IBDV upon treatment with IFN-α. Our results indicate that IBDV genomic dsRNA is a major viral factor that contributes to the triggering of apoptosis. These findings provide novel insights into the potential mechanisms of IBDV-induced immunosuppression and pathogenesis in chickens.IMPORTANCE IBDV infection represents an important threat to the poultry industry worldwide. IBDV-infected chickens develop severe immunosuppression, which renders them highly susceptible to secondary infections and unresponsive to vaccination against other pathogens. The early dysregulation of the innate immune response led by IBDV infection and the exacerbated apoptosis of B cells have been proposed as the main factors that contribute to virus-induced immunopathogenesis. Our work contributes for the first time to elucidating a potential mechanism driving the apoptotic death of IBDV-infected cells upon exposure to type I IFN. We provide solid evidence about the critical importance of PKR, TNF-α, and NF-κB in this phenomenon. The described mechanism could facilitate the early clearance of infected cells, thereby aiding in the amelioration of IBDV-induced pathogenesis, but it could also contribute to B cell depletion and immunosuppression. The balance between these two opposing effects might be dramatically affected by the genetic backgrounds of both the host and the infecting virus strain.


Assuntos
Antivirais/farmacologia , Apoptose/imunologia , Linfócitos B/imunologia , Infecções por Birnaviridae/imunologia , Vírus da Doença Infecciosa da Bursa/imunologia , Interferon-alfa/farmacologia , Animais , Infecções por Birnaviridae/patologia , Bolsa de Fabricius/patologia , Bolsa de Fabricius/virologia , Linhagem Celular Tumoral , Embrião de Galinha , Galinhas/virologia , Chlorocebus aethiops , Células HeLa , Humanos , NF-kappa B/biossíntese , Doenças das Aves Domésticas/virologia , Proteínas Quinases/biossíntese , Fator de Necrose Tumoral alfa/biossíntese , Células Vero
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...