Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Med Technol ; 6: 1320762, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38456122

RESUMO

Introduction: Stereoelectroencephalography (sEEG) is a minimally invasive procedure that uses depth electrodes stereotactically implanted into brain structures to map the origin and propagation of seizures in epileptic patients. Implantation accuracy of sEEG electrodes plays a critical role in the safety and efficacy of the procedure. This study used human cadaver heads, simulating clinical practice, to evaluate (1) neurosurgeon's ability to implant a new thin-film polyimide sEEG electrode according to the instructions for use (IFU), and (2) implantation accuracy. Methods: Four neurosurgeons (users) implanted 24 sEEG electrodes into two cadaver heads with the aid of the ROSA robotic system. Usability was evaluated using a questionnaire that assessed completion of all procedure steps per IFU and user errors. For implantation accuracy evaluation, planned electrode trajectories were compared with post-implantation trajectories after fusion of pre- and postoperative computer tomography (CT) images. Implantation accuracy was quantified using the Euclidean distance for entry point error (EPE) and target point error (TPE). Results: All sEEG electrodes were successfully placed following the IFU without user errors, and post-implant survey of users showed favorable handling characteristics. The EPE was 1.28 ± 0.86 mm and TPE was 1.61 ± 0.89 mm. Long trajectories (>50 mm) had significantly larger EPEs and TPEs than short trajectories (<50 mm), and no differences were found between orthogonal and oblique trajectories. Accuracies were similar or superior to those reported in the literature when using similar experimental conditions, and in the same range as those reported in patients. Discussion: The results demonstrate that newly developed polyimide sEEG electrodes can be implanted as accurately as similar devices in the marker without user errors when following the IFU in a simulated clinical environment. The human cadaver ex-vivo test system provided a realistic test system, owing to the size, anatomy and similarity of tissue composition to that of the live human brain.

2.
Micromachines (Basel) ; 13(10)2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36296151

RESUMO

Subdural electrode arrays are used for monitoring cortical activity and functional brain mapping in patients with seizures. Until recently, the only commercially available arrays were silicone-based, whose thickness and lack of conformability could impact their performance. We designed, characterized, manufactured, and obtained FDA clearance for 29-day clinical use (510(k) K192764) of a new thin-film polyimide-based electrode array. This study describes the electrochemical characterization undertaken to evaluate the quality and reliability of electrical signal recordings and stimulation of these new arrays. Two testing paradigms were performed: a short-term active soak with electrical stimulation and a 29-day passive soak. Before and after each testing paradigm, the arrays were evaluated for their electrical performance using Electrochemical Impedance Spectroscopy (EIS), Cyclic Voltammetry (CV) and Voltage Transients (VT). In all tests, the impedance remained within an acceptable range across all frequencies. The different CV curves showed no significant changes in shape or area, which is indicative of stable electrode material. The electrode polarization remained within appropriate limits to avoid hydrolysis.

3.
Front Neurosci ; 16: 876877, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35573282

RESUMO

Subdural strip and grid invasive electroencephalography electrodes are routinely used for surgical evaluation of patients with drug-resistant epilepsy (DRE). Although these electrodes have been in the United States market for decades (first FDA clearance 1985), their fabrication, materials, and properties have hardly changed. Existing commercially available electrodes are made of silicone, are thick (>0.5 mm), and do not optimally conform to brain convolutions. New thin-film polyimide electrodes (0.08 mm) have been manufactured to address these issues. While different thin-film electrodes are available for research use, to date, only one electrode is cleared by Food and Drug Administration (FDA) for use in clinical practice. This study describes the biocompatibility tests that led to this clearance. Biocompatibility was tested using standard methods according to International Organization for Standardization (ISO) 10993. Electrodes and appropriate control materials were bent, folded, and placed in the appropriate extraction vehicles, or implanted. The extracts were used for in vitro and in vivo tests, to assess the effects of any potential extractable and leachable materials that may be toxic to the body. In vitro studies included cytotoxicity tested in L929 cell line, genotoxicity tested using mouse lymphoma assay (MLA) and Ames assay, and hemolysis tested in rabbit whole blood samples. The results indicated that the electrodes were non-cytotoxic, non-mutagenic, non-clastogenic, and non-hemolytic. In vivo studies included sensitization tested in guinea pigs, irritation tested in rabbits, acute systemic toxicity testing in mice, pyrogenicity tested in rabbits, and a prolonged 28-day subdural implant in sheep. The results indicated that the electrodes induced no sensitization and irritation, no weight loss, and no temperature increase. Histological examination of the sheep brain tissue showed no or minimal immune cell accumulation, necrosis, neovascularization, fibrosis, and astrocyte infiltration, with no differences from the control material. In summary, biocompatibility studies indicated that these new thin-film electrodes are appropriate for human use. As a result, the electrodes were cleared by the FDA for use in clinical practice [510(k) K192764], making it the first thin-film subdural electrode to progress from research to clinic. Its readiness as a commercial product ensures availability to all patients undergoing surgical evaluation for DRE.

4.
Phys Chem Chem Phys ; 15(19): 7050-4, 2013 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-23579859

RESUMO

Energy conversion devices require the parallel functionality of a variety of components for efficient operation. We present a versatile microfluidic test-bed for facile testing of integrated catalysis and mass transport components for energy conversion via water electrolysis. This system can be readily extended to solar-fuels generators and fuel-cell devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...