Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 15: 1277447, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38633245

RESUMO

Modified vaccinia virus Ankara (MVA) has been widely tested in clinical trials as recombinant vector vaccine against infectious diseases and cancers in humans and animals. However, one biosafety concern about the use of MVA vectored vaccine is the potential for MVA to recombine with naturally occurring orthopoxviruses in cells and hosts in which it multiplies poorly and, therefore, producing viruses with mosaic genomes with altered genetic and phenotypic properties. We previously conducted co-infection and superinfection experiments with MVA vectored influenza vaccine (MVA-HANP) and a feline Cowpox virus (CPXV-No-F1) in Vero cells (that were semi-permissive to MVA infection) and showed that recombination occurred in both co-infected and superinfected cells. In this study, we selected the putative recombinant viruses and performed genomic characterization of these viruses. Some putative recombinant viruses displayed plaque morphology distinct of that of the parental viruses. Our analysis demonstrated that they had mosaic genomes of different lengths. The recombinant viruses, with a genome more similar to MVA-HANP (>50%), rescued deleted and/or fragmented genes in MVA and gained new host ranges genes. Our analysis also revealed that some MVA-HANP contained a partially deleted transgene expression cassette and one recombinant virus contained part of the transgene expression cassette similar to that incomplete MVA-HANP. The recombination in co-infected and superinfected Vero cells resulted in recombinant viruses with unpredictable biological and genetic properties as well as recovery of delete/fragmented genes in MVA and transfer of the transgene into replication competent CPXV. These results are relevant to hazard characterization and risk assessment of MVA vectored biologicals.


Assuntos
Coinfecção , Vacinas contra Influenza , Superinfecção , Chlorocebus aethiops , Animais , Gatos , Humanos , Vacinas contra Influenza/genética , Vírus da Varíola Bovina/genética , Células Vero , Vaccinia virus , Vacinas Sintéticas/genética , Sequenciamento Completo do Genoma
2.
Front Cell Infect Microbiol ; 14: 1360586, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38510963

RESUMO

Monkeypox virus (MPXV) is the etiological agent of monkeypox (mpox), a zoonotic disease. MPXV is endemic in the forested regions of West and Central Africa, but the virus has recently spread globally, causing outbreaks in multiple non-endemic countries. In this paper, we review the characteristics of the virus, including its ecology, genomics, infection biology, and evolution. We estimate by phylogenomic molecular clock that the B.1 lineage responsible for the 2022 mpox outbreaks has been in circulation since 2016. We interrogate the host-virus interactions that modulate the virus infection biology, signal transduction, pathogenesis, and host immune responses. We highlight the changing pathophysiology and epidemiology of MPXV and summarize recent advances in the prevention and treatment of mpox. In addition, this review identifies knowledge gaps with respect to the virus and the disease, suggests future research directions to address the knowledge gaps, and proposes a One Health approach as an effective strategy to prevent current and future epidemics of mpox.


Assuntos
Monkeypox virus , Mpox , Humanos , Monkeypox virus/genética , Mpox/epidemiologia , Surtos de Doenças , Ecologia , Genômica
3.
Viruses ; 14(10)2022 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-36298689

RESUMO

Cowpox virus (CPXV; genus Orthopoxvirus; family Poxviridae) is the causative agent of cowpox, a self-limiting zoonotic infection. CPXV is endemic in Eurasia, and human CPXV infections are associated with exposure to infected animals. In the Fennoscandian region, five CPXVs isolated from cats and humans were collected and used in this study. We report the complete sequence of their genomes, which ranged in size from 220-222 kbp, containing between 215 and 219 open reading frames. The phylogenetic analysis of 87 orthopoxvirus strains, including the Fennoscandian CPXV isolates, confirmed the division of CPXV strains into at least five distinct major clusters (CPXV-like 1, CPXV-like 2, VACV-like, VARV-like and ECTV-Abatino-like) and can be further divided into eighteen sub-species based on the genetic and patristic distances. Bayesian time-scaled evolutionary history of CPXV was reconstructed employing concatenated 62 non-recombinant conserved genes of 55 CPXV. The CPXV evolution rate was calculated to be 1.65 × 10-5 substitution/site/year. Our findings confirmed that CPXV is not a single species but a polyphyletic assemblage of several species and thus, a reclassification is warranted.


Assuntos
Varíola Bovina , Orthopoxvirus , Animais , Humanos , Vírus da Varíola Bovina , Filogenia , Teorema de Bayes , Varíola Bovina/veterinária , Orthopoxvirus/genética , Genômica
4.
Front Microbiol ; 13: 868887, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35592007

RESUMO

Orthopoxviruses (OPXVs) not only infect their natural hosts, but some OPXVs can also cause disease in humans. Previously, we partially characterized an OPXV isolated from an 18-year-old male living in Northern Norway. Restriction enzyme analysis and partial genome sequencing characterized this virus as an atypical cowpox virus (CPXV), which we named CPXV-No-H2. In this study, we determined the complete genome sequence of CPXV-No-H2 using Illumina and Nanopore sequencing. Our results showed that the whole CPXV-No-H2 genome is 220,276 base pairs (bp) in length, with inverted terminal repeat regions of approximately 7 kbp, containing 217 predicted genes. Seventeen predicted CPXV-No-H2 proteins were most similar to OPXV proteins from the Old World, including Ectromelia virus (ECTV) and Vaccinia virus, and North America, Alaskapox virus (AKPV). CPXV-No-H2 has a mosaic genome with genes most similar to other OPXV genes, and seven potential recombination events were identified. The phylogenetic analysis showed that CPXV-No-H2 formed a separate clade with the German CPXV isolates CPXV_GerMygEK938_17 and CPXV_Ger2010_MKY, sharing 96.4 and 96.3% nucleotide identity, respectively, and this clade clustered closely with the ECTV-OPXV Abatino clade. CPXV-No-H2 is a mosaic virus that may have arisen out of several recombination events between OPXVs, and its phylogenetic clustering suggests that ECTV-Abatino-like cowpox viruses form a distinct, new clade of cowpox viruses.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...