Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Life Sci Alliance ; 7(3)2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38176727

RESUMO

Activating transcription factor 4 (Atf4), which is modulated by the protein kinase RNA-like ER kinase (PERK), is a stress-induced transcription factor responsible for controlling the expression of a wide range of adaptive genes, enabling cells to withstand stressful conditions. However, the impact of the Atf4 signaling pathway on airway regeneration remains poorly understood. In this study, we used mouse airway epithelial cell culture models to investigate the role of PERK/Atf4 in respiratory tract differentiation. Through pharmacological inhibition and silencing of ATF4, we uncovered the crucial involvement of PERK/Atf4 in the differentiation of basal stem cells, leading to a reduction in the number of secretory cells. ChIP-seq analysis revealed direct binding of ATF4 to regulatory elements of genes associated with osteoblast differentiation and secretory cell function. Our findings provide valuable insights into the role of ATF4 in airway epithelial differentiation and its potential involvement in innate immune responses and cellular adaptation to stress.


Assuntos
Estresse do Retículo Endoplasmático , eIF-2 Quinase , Animais , Camundongos , eIF-2 Quinase/genética , Estresse do Retículo Endoplasmático/genética , Fator 4 Ativador da Transcrição/genética , Fator 4 Ativador da Transcrição/metabolismo , Diferenciação Celular/genética , Sistema Respiratório/metabolismo
2.
Vet Res ; 54(1): 91, 2023 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-37845774

RESUMO

The microbiota in humans and animals play crucial roles in defense against pathogens and offer a promising natural source for immunomodulatory products. However, the development of physiologically relevant model systems and protocols for testing such products remains challenging. In this study, we present an experimental condition where various natural products derived from the registered lactic acid bacteria Ligilactobacillus salivarius CECT 9609, known for their immunomodulatory activity, were tested. These products included live and inactivated bacteria, as well as fermentation products at different concentrations and culture times. Using our established model system, we observed no morphological changes in the airway epithelium upon exposure to Pasteurella multocida, a common respiratory pathogen. However, early molecular changes associated with the innate immune response were detected through transcript analysis. By employing diverse methodologies ranging from microscopy to next-generation sequencing (NGS), we characterized the interaction of these natural products with the airway epithelium and their potential beneficial effects in the presence of P. multocida infection. In particular, our discovery highlights that among all Ligilactobacillus salivarius CECT 9609 products tested, only inactivated cells preserve the conformation and morphology of respiratory epithelial cells, while also reversing or altering the natural immune responses triggered by Pasteurella multocida. These findings lay the groundwork for further exploration into the protective role of these bacteria and their derivatives.


Assuntos
Produtos Biológicos , Ligilactobacillus salivarius , Infecções por Pasteurella , Pasteurella multocida , Humanos , Animais , Imunidade Inata , Células Epiteliais , Produtos Biológicos/farmacologia , Infecções por Pasteurella/microbiologia , Infecções por Pasteurella/veterinária
3.
Front Cell Dev Biol ; 9: 622515, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34395412

RESUMO

Tight-junction (TJ) proteins are essential for establishing the barrier function between neighbor epithelial cells, but also for recognition of pathogens or cell migration. Establishing the expression pattern and localization of different TJ proteins will help to understand the development and physiology of the airway. Here we identify that the junctional adhesion molecule 3 (Jam3) expression is restricted to multiciliated cells (MCCs) in the airway epithelium. In vitro, Jam3 expression varies along airway basal stem cell (BSC) differentiation and upon DAPT treatment or IL6 exposure. However, Jam3 is not required for BSC differentiation to specific cell types. In addition, we found that MCC lacking Jam3 display normal cilia morphology and cilia beating frequency with a delay in BB assembly/positioning in MCCs during differentiation. Remarkably, Jam3 in MCC is mostly localized to subapical organelles, which are negative for the apical recycling endosome marker Rab11 and positive for EEA1. Our data show that Jam3 expression is connected to mature MCC in the airway epithelium and suggest a Jam3 role unrelated to its known barrier function.

4.
FASEB J ; 35(9): e21816, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34396583

RESUMO

Proper physiological function of mammalian airways requires the differentiation of basal stem cells into secretory or multiciliated cells, among others. In addition, the self-renewal ability of these basal stem cells is crucial for developing a quick response to toxic agents in order to re-establish the epithelial barrier function of the airways. Although these epithelial missions are vital, little is known about those mechanism controlling airway epithelial regeneration in health and disease. p53 has been recently proposed as the guardian of homeostasis, promoting differentiation programs, and antagonizing a de-differentiation program. Here, we exploit mouse and human tracheal epithelial cell culture models to study the role of MDM2-p53 signaling in self-renewal and differentiation in the airway epithelium. We show that p53 protein regulation by MDM2 is crucial for basal stem cell differentiation and to keep proper cell proliferation. Therefore, we suggest that MDM2/p53 interaction modulation is a potential target to control regeneration of the mammalian airway epithelia without massively affecting the epithelium integrity and differentiation potential.


Assuntos
Diferenciação Celular/fisiologia , Epitélio/metabolismo , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Mucosa Respiratória/metabolismo , Células-Tronco/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Animais , Proliferação de Células/fisiologia , Células Epiteliais/metabolismo , Feminino , Homeostase/fisiologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Regeneração/fisiologia , Transdução de Sinais/fisiologia , Traqueia/metabolismo
5.
Front Cell Dev Biol ; 9: 708844, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35111744

RESUMO

IL6 is an essential cytokine in metabolism regulation and for intercommunication among different organs and tissues. IL6 produced by different tissues has different functions and therefore it is very important to understand the mechanism of its expression in adipose tissue. In this work we demonstrated that IL6 expression in mouse preadipocytes, like in human, is partially dependent on Wnt5a and JNK. Using mouse preadipocytes lacking each one of the p38 SAPK family members, we have shown that IL6 expression is also p38γ and p38δ dependent. In fact, the lack of some of these two kinases increases IL6 expression without altering that of Wnt5a. Moreover, we show that the absence of p38δ promotes greater ERK1/2 phosphorylation in a MEK1/2 independent manner, and that this increased ERK1/2 phosphorylation state is contributing to the higher IL6 expression in p38δ-/- preadipocytes. These results suggest a new crosstalk between two MAPK signaling pathway, p38δ and ERK1/2, where p38δ modulates the phosphorylation state of ERK1/2.

6.
Results Probl Cell Differ ; 67: 201-221, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31435796

RESUMO

Organelle positioning as many other morphological parameters in a cell is not random. Centriole positioning as centrosomes or ciliary basal bodies is not an exception to this rule in cell biology. Indeed, centriole positioning is a tightly regulated process that occurs during development, and it is critical for many organs to function properly, not just during development but also in the adulthood. In this book chapter, we overview our knowledge on centriole positioning in different and highly specialized animal cells like photoreceptor or ependymal cells. We will also discuss recent advances in the discovery of molecular pathways involved in this process, mostly related to the cytoskeleton and the cell polarity pathways. And finally, we present quantitative methods that have been used to assess centriole positioning in different cell types although mostly in epithelial cells.


Assuntos
Compartimento Celular , Centríolos/metabolismo , Animais , Polaridade Celular , Citoesqueleto/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA