Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38659774

RESUMO

The ability to image at high speeds is necessary for biological imaging to capture fast-moving or transient events or to efficiently image large samples. However, due to the lack of rigidity of biological specimens, carrying out fast, high-resolution volumetric imaging without moving and agitating the sample has been a challenging problem. Pupil-matched remote focusing has been promising for high NA imaging systems with their low aberrations and wavelength independence, making it suitable for multicolor imaging. However, owing to the incoherent and unpolarized nature of the fluorescence signal, manipulating this emission light through remote focusing is challenging. Therefore, remote focusing has been primarily limited to the illumination arm, using polarized laser light to facilitate coupling in and out of the remote focusing optics. Here, we introduce a novel optical design that can de-scan the axial focus movement in the detection arm of a microscope. Our method splits the fluorescence signal into S and P-polarized light, lets them pass through the remote focusing module separately, and combines them with the camera. This allows us to use only one focusing element to perform aberration-free, multi-color, volumetric imaging without (a) compromising the fluorescent signal and (b) needing to perform sample/detection-objective translation. We demonstrate the capabilities of this scheme by acquiring fast dual-color 4D (3D space + time) image stacks with an axial range of 70 µm and camera-limited acquisition speed. Owing to its general nature, we believe this technique will find its application in many other microscopy techniques that currently use an adjustable Z-stage to carry out volumetric imaging, such as confocal, 2-photon, and light sheet variants.

2.
Res Sq ; 2023 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-37886461

RESUMO

The ability to image at high speeds is necessary in biological imaging to capture fast-moving or transient events or to efficiently image large samples. However, due to the lack of rigidity of biological specimens, carrying out fast, high-resolution volumetric imaging without moving and agitating the sample has been a challenging problem. Pupil-matched remote focusing has been promising for high NA imaging systems with their low aberrations and wavelength independence, making it suitable for multicolor imaging. However, owing to the incoherent and unpolarized nature of the fluorescence signal, manipulating this emission light through remote focusing is challenging. Therefore, remote focusing has been primarily limited to the illumination arm, using polarized laser light for facilitating coupling in and out of the remote focusing optics. Here we introduce a novel optical design that can de-scan the axial focus movement in the detection arm of a microscope. Our method splits the fluorescence signal into S and P-polarized light and lets them pass through the remote focusing module separately and combines them with the camera. This allows us to use only one focusing element to perform aberration-free, multi-color, volumetric imaging without (a) compromising the fluorescent signal and (b) needing to perform sample/detection-objective translation. We demonstrate the capabilities of this scheme by acquiring fast dual-color 4D (3D space + time) image stacks, with an axial range of 70 µm and camera limited acquisition speed. Owing to its general nature, we believe this technique will find its application to many other microscopy techniques that currently use an adjustable Z-stage to carry out volumetric imaging such as confocal, 2-photon, and light sheet variants.

3.
Biomed Opt Express ; 13(9): 4990-5003, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-36187249

RESUMO

Axially swept light sheet microscopy (ASLM) is an emerging technique that enables isotropic, subcellular resolution imaging with high optical sectioning capability over a large field-of-view (FOV). Due to its versatility across a broad range of immersion media, it has been utilized to image specimens that may range from live cells to intact chemically cleared organs. However, because of its design, the performance of ASLM-based microscopes is impeded by a low detection signal and the maximum achievable frame-rate for full FOV imaging. Here we present a new optical concept that pushes the limits of ASLM further by scanning two staggered light sheets and simultaneously synchronizing the rolling shutter of a scientific camera. For a particular peak-illumination-intensity, this idea can make ASLMs image twice as fast without compromising the detection signal. Alternately, for a particular frame rate our method doubles the detection signal without requiring to double the peak-illumination-power, thereby offering a gentler illumination scheme compared to tradition single-focus ASLM. We demonstrate the performance of our instrument by imaging fluorescent beads and a PEGASOS cleared-tissue mouse brain.

4.
ACS Nano ; 15(1): 1229-1239, 2021 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-33337861

RESUMO

We present a transformative route to obtain mass-producible helical slow-wave structures for operation in beam-wave interaction devices at THz frequencies. The approach relies on guided self-assembly of conductive nanomembranes. Our work coordinates simulations of cold helices (i.e., helices with no electron beam) and hot helices (i.e., helices that interact with an electron beam). The theoretical study determines electromagnetic fields, current distributions, and beam-wave interaction in a parameter space that has not been explored before. These parameters include microscale diameter, pitch, tape width, and nanoscale surface finish. Parametric simulations show that beam-wave interaction devices based on self-assembled and electroplated helices will potentially provide gain-bandwidth products higher than 2 dBTHz at 1 THz. Informed by the simulation results, we fabricate prototype helices for operation as slow-wave structures at THz frequencies, using metal nanomembranes. Single and intertwined double helices, as well as helices with one or two chiralities, are obtained by self-assembly of stressed metal bilayers. The nanomembrane stiffness and built-in stress control the diameter of the helices. The in-plane geometry of the nanomembrane determines the pitch, the chirality, and the formation of single vs intertwined double helices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...