Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 8528, 2023 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-38135683

RESUMO

Multifunctional platforms that can dynamically modulate their color and appearance have attracted attention for applications as varied as displays, signaling, camouflage, anti-counterfeiting, sensing, biomedical imaging, energy conservation, and robotics. Within this context, the development of camouflage systems with tunable spectroscopic and fluorescent properties that span the ultraviolet, visible, and near-infrared spectral regions has remained exceedingly challenging because of frequently competing materials and device design requirements. Herein, we draw inspiration from the unique blue rings of the Hapalochlaena lunulata octopus for the development of deception and signaling systems that resolve these critical challenges. As the active material, our actuator-type systems incorporate a readily-prepared and easily-processable nonacene-like molecule with an ambient-atmosphere stability that exceeds the state-of-the-art for comparable acenes by orders of magnitude. Devices from this active material feature a powerful and unique combination of advantages, including straightforward benchtop fabrication, competitive baseline performance metrics, robustness during cycling with the capacity for autonomous self-repair, and multiple dynamic multispectral operating modes. When considered together, the described exciting discoveries point to new scientific and technological opportunities in the areas of functional organic materials, reconfigurable soft actuators, and adaptive photonic systems.

2.
Sensors (Basel) ; 23(20)2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37896477

RESUMO

We present a 2D-stitched, 316MP, 120FPS, high dynamic range CMOS image sensor with 92 CML output ports operating at a cumulative date rate of 515 Gbit/s. The total die size is 9.92 cm × 8.31 cm and the chip is fabricated in a 65 nm, 4 metal BSI process with an overall power consumption of 23 W. A 4.3 µm dual-gain pixel has a high and low conversion gain full well of 6600e- and 41,000e-, respectively, with a total high gain temporal noise of 1.8e- achieving a composite dynamic range of 87 dB.

3.
J Am Chem Soc ; 144(23): 10591-10598, 2022 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-35670469

RESUMO

The motion of single molecular ruthenium catalysts during and after single turnover events of ring-opening metathesis polymerization is imaged through single-molecule superresolution tracking with a positional accuracy of ±32 nm. This tracking is achieved through the real-time incorporation of spectrally tagged monomer units into active polymer chain ends during living polymerization; thus, by design, only active-catalyst motion is detected and imaged, without convolution by inactive catalysts. The catalysts show diverse individualistic diffusive behaviors with respect to time that persist for up to 20 s. Catalysts occupy three mobility populations: quasi-stationary (23%), intermediate (53%, 65 nm), and large (24%, 145 nm) step sizes. Differences in catalyst mobility populations also exist between individual aggregates (p < 0.001). Such differential motion indicates widely different local catalyst microenvironments during the catalytic turnover. These mobility differences are uniquely observable through single-catalyst microscopy and are not measurable through traditional ensemble analytical techniques for characterizing the behavior of molecular catalysts, such as nuclear magnetic resonance spectroscopy. The measured distributions of active molecular catalyst motions would not be readily predictable through modeling or first-principles, and the range likely impacts individual catalyst turnover rate and selectivity. This range plausibly contributes to property distributions observable in bulk polymers, such as molecular weight polydispersity (e.g., 1.9 in this system), leading to a revised understanding of the mechanistic, microscale origins of macroscale polymer properties.


Assuntos
Rutênio , Catálise , Peso Molecular , Polimerização , Polímeros/química , Rutênio/química
4.
Angew Chem Int Ed Engl ; 60(3): 1550-1555, 2021 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-33090633

RESUMO

The chemoselectivity of molecular catalysts underpins much of modern synthetic organic chemistry. However, little is known about the selectivity of individual catalysts because this single-catalyst-level behavior is hidden by the bulk catalytic behavior. Here, for the first time, the selectivity of individual molecular catalysts for two different reactions is imaged in real time at the single-catalyst level. This imaging is achieved through fluorescence microscopy paired with spectral probes that produce a snapshot of the instantaneous chemoselectivity of a single catalyst for either a single-chain-elongation or a single-chain-termination event during ruthenium-catalyzed polymerization. Superresolution imaging of multiple selectivity events, each at a different single-molecular ruthenium catalyst, indicates that catalyst selectivity may be unexpectedly spatially and time-variable.

5.
Chempluschem ; 84(4): 416-419, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-31939213

RESUMO

DNA has long been viewed as a promising material for nanoscale electronics, in part due to its well-ordered arrangement of stacked, pi-conjugated base pairs. Within this context, a number of studies have investigated how structural changes, backbone modifications, or artificial base substitutions affect the conductivity of DNA. Herein, we present a comparative study of the electrical properties of both well-matched and perylene-3,4,9,10-tetracarboxylic diimide (PTCDI)-containing DNA molecular wires that bridge nanoscale gold electrodes. By performing current-voltage measurements for such devices, we find that the incorporation of PTCDI DNA base surrogates within our macromolecular constructs leads to an approximately 6-fold enhancement in the observed current levels. Together, these findings suggest that PTCDI DNA base surrogates may enable the preparation of designer DNA-based nanoscale electronic components.


Assuntos
DNA/química , Imidas/química , Perileno/análogos & derivados , Pareamento de Bases , Eletrodos , Eletrônica , Perileno/química
6.
Org Lett ; 20(3): 502-505, 2018 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-29364681

RESUMO

This study describes the synthesis of modular diquinolineanthracene and polydiquinolineanthracene derivatives. The reported facile and scalable aza-Diels-Alder-based approach requires mild conditions, proceeds in two steps, uses commercially available starting materials, and accommodates varying functionalities. Given the known utility of the acene and quinoline motifs, the synthesized molecules and polymers hold promise for organic electronics applications.

7.
Angew Chem Int Ed Engl ; 55(10): 3352-5, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26834003

RESUMO

Carbon-based materials, such as acenes, fullerenes, and graphene nanoribbons, are viewed as the potential successors to silicon in the next generation of electronics. Although a number of methodologies provide access to these materials' all-carbon variants, relatively fewer strategies readily furnish their nitrogen-doped analogues. Herein, we report the rational design, preparation, and characterization of nitrogen-containing rubicenes and tetrabenzopentacenes, which can be viewed either as acene derivatives or as molecular fragments of fullerenes and graphene nanoribbons. The reported findings may prove valuable for the development of electron transporting organic semiconductors and for the eventual construction of larger carbonaceous systems.

8.
Org Lett ; 18(2): 156-9, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26705096

RESUMO

Graphene nanoribbons (GNRs) are promising candidate materials for the next generation of nanoscale electronics. Described herein is the synthesis of 2,4,6-substituted benzoquinolines, which constitute building blocks for nitrogen-doped GNRs. The presented facile and modular aza-Diels-Alder chemistry accommodates the installation of diverse functionalities at the crowded benzoquinolines' 2 positions. Given the general utility of the benzoquinoline motif, these findings hold relevance not only for carbon-based electronics but also for a range of chemical disciplines.

9.
Angew Chem Int Ed Engl ; 54(20): 5883-7, 2015 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-25823492

RESUMO

Graphene nanoribbons (GNRs) represent promising materials for the next generation of nanoscale electronics. However, despite substantial progress towards the bottom-up synthesis of chemically and structurally well-defined all-carbon GNRs, strategies for the preparation of their nitrogen-doped analogs remain at a nascent stage. This scarce literature precedent is surprising given the established use of substitutional doping for tuning the properties of electronic materials. Herein, we report the synthesis of a previously unknown class of polybenzoquinoline-based materials, which have potential as GNR precursors. Our scalable and facile approach employs few synthetic steps, inexpensive commercial starting materials, and straightforward reaction conditions. Moreover, due to the importance of quinoline derivatives for a variety of applications, the reported findings may hold implications across a diverse range of chemical and physical disciplines.

10.
J Org Chem ; 76(19): 7706-19, 2011 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-21806053

RESUMO

The axial conformer of several 4-substituted cyclohexanone hydrazone salts was found to predominate in solution. Changes in the charge of the molecule and the polarity of the solvent led to changes in the conformational preference of each molecule that were consistent with electrostatic stabilization of the axial conformer. (1)H NMR spectroscopic analysis was utilized to determine the structure of cyclohexanone-derived substrates by comparison to conformationally restricted trans-decalone derivatives and computational models. X-ray crystallography demonstrated that the axial configuration of a pendant benzyloxy group is the preferred conformation of an iminium ion in the solid state. The structure of a neutral hydrazone was also determined to favor the axial configuration for a pendant benzyloxy group in the solid state.


Assuntos
Cicloexanonas/química , Hidrazonas/química , Iminas/química , Sais/química , Análise Espectral , Eletricidade Estática , Cristalografia por Raios X , Modelos Moleculares , Conformação Molecular , Soluções , Estereoisomerismo , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...