Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 4430, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38789420

RESUMO

Histone H2AX plays a key role in DNA damage signalling in the surrounding regions of DNA double-strand breaks (DSBs). In response to DNA damage, H2AX becomes phosphorylated on serine residue 139 (known as γH2AX), resulting in the recruitment of the DNA repair effectors 53BP1 and BRCA1. Here, by studying resistance to poly(ADP-ribose) polymerase (PARP) inhibitors in BRCA1/2-deficient mammary tumours, we identify a function for γH2AX in orchestrating drug-induced replication fork degradation. Mechanistically, γH2AX-driven replication fork degradation is elicited by suppressing CtIP-mediated fork protection. As a result, H2AX loss restores replication fork stability and increases chemoresistance in BRCA1/2-deficient tumour cells without restoring homology-directed DNA repair, as highlighted by the lack of DNA damage-induced RAD51 foci. Furthermore, in the attempt to discover acquired genetic vulnerabilities, we find that ATM but not ATR inhibition overcomes PARP inhibitor (PARPi) resistance in H2AX-deficient tumours by interfering with CtIP-mediated fork protection. In summary, our results demonstrate a role for H2AX in replication fork biology in BRCA-deficient tumours and establish a function of H2AX separable from its classical role in DNA damage signalling and DSB repair.


Assuntos
Proteína BRCA1 , Proteína BRCA2 , Replicação do DNA , Resistencia a Medicamentos Antineoplásicos , Histonas , Inibidores de Poli(ADP-Ribose) Polimerases , Animais , Feminino , Humanos , Camundongos , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteína BRCA1/metabolismo , Proteína BRCA1/deficiência , Proteína BRCA1/genética , Proteína BRCA2/metabolismo , Proteína BRCA2/genética , Proteína BRCA2/deficiência , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Neoplasias da Mama/tratamento farmacológico , Proteínas de Transporte/metabolismo , Proteínas de Transporte/genética , Linhagem Celular Tumoral , Quebras de DNA de Cadeia Dupla , Dano ao DNA , Reparo do DNA , Replicação do DNA/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Histonas/metabolismo , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Rad51 Recombinase/metabolismo , Rad51 Recombinase/genética , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/metabolismo , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/genética , Camundongos Nus
2.
EMBO J ; 43(6): 1015-1042, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38360994

RESUMO

Targeting poly(ADP-ribose) glycohydrolase (PARG) is currently explored as a therapeutic approach to treat various cancer types, but we have a poor understanding of the specific genetic vulnerabilities that would make cancer cells susceptible to such a tailored therapy. Moreover, the identification of such vulnerabilities is of interest for targeting BRCA2;p53-deficient tumors that have acquired resistance to poly(ADP-ribose) polymerase inhibitors (PARPi) through loss of PARG expression. Here, by performing whole-genome CRISPR/Cas9 drop-out screens, we identify various genes involved in DNA repair to be essential for the survival of PARG;BRCA2;p53-deficient cells. In particular, our findings reveal EXO1 and FEN1 as major synthetic lethal interactors of PARG loss. We provide evidence for compromised replication fork progression, DNA single-strand break repair, and Okazaki fragment processing in PARG;BRCA2;p53-deficient cells, alterations that exacerbate the effects of EXO1/FEN1 inhibition and become lethal in this context. Since this sensitivity is dependent on BRCA2 defects, we propose to target EXO1/FEN1 in PARPi-resistant tumors that have lost PARG activity. Moreover, EXO1/FEN1 targeting may be a useful strategy for enhancing the effect of PARG inhibitors in homologous recombination-deficient tumors.


Assuntos
Neoplasias , Proteína Supressora de Tumor p53 , Humanos , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Reparo do DNA , Dano ao DNA , Neoplasias/tratamento farmacológico , Neoplasias/genética , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Glicosídeo Hidrolases/genética , Glicosídeo Hidrolases/metabolismo , Endonucleases Flap/genética , Endonucleases Flap/metabolismo , Endonucleases Flap/uso terapêutico , Exodesoxirribonucleases/genética , Enzimas Reparadoras do DNA/genética
3.
Mol Cell ; 84(3): 409-410, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38307000

RESUMO

In this issue of Molecular Cell, Lim et al.1 reveal new insights into the distinct roles of BRCA2 in coping with DNA breaks, highlighting homologous recombination as the pivotal function that affects tumorigenesis and therapy response.


Assuntos
Replicação do DNA , Rad51 Recombinase , Proteína BRCA2/genética , Proteína BRCA2/metabolismo , Quebras de DNA , Reparo do DNA , Recombinação Homóloga/genética , Rad51 Recombinase/genética , Humanos , Animais , Camundongos
4.
Mol Cell ; 82(20): 3932-3942.e6, 2022 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-36130596

RESUMO

The DNA-PKcs kinase mediates the repair of DNA double-strand breaks via classical non-homologous end joining (NHEJ). DNA-PKcs is also recruited to active replication forks, although a role for DNA-PKcs in the control of fork dynamics is unclear. Here, we identify a crucial role for DNA-PKcs in promoting fork reversal, a process that stabilizes stressed replication forks and protects genome integrity. DNA-PKcs promotes fork reversal and slowing in response to several replication stress-inducing agents in a manner independent of its role in NHEJ. Cells lacking DNA-PKcs activity show increased DNA damage during S-phase and cellular sensitivity to replication stress. Notably, prevention of fork slowing and reversal via DNA-PKcs inhibition efficiently restores chemotherapy sensitivity in BRCA2-deficient mammary tumors with acquired PARPi resistance. Together, our data uncover a new key regulator of fork reversal and show how DNA-PKcs signaling can be manipulated to alter fork dynamics and drug resistance in cancer.


Assuntos
Quebras de DNA de Cadeia Dupla , Resistencia a Medicamentos Antineoplásicos , Resistencia a Medicamentos Antineoplásicos/genética , Dano ao DNA , Reparo do DNA por Junção de Extremidades , DNA/genética , Replicação do DNA , Reparo do DNA
5.
NAR Cancer ; 2(2): zcaa006, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32743550

RESUMO

Most cancer cells experience oncogene-induced replication stress and, as a result, exhibit high intrinsic activation of the ATR kinase. Although cancer cells often become more dependent on ATR for survival, the precise mechanism by which ATR signaling ensures cancer cell fitness and viability remains incompletely understood. Here, we find that intrinsic ATR signaling is crucial for the ability of cancer cells to promote DNA end resection, the first step in homology-directed DNA repair. Inhibition of ATR over multiple cell division cycles depletes the pool of pro-resection factors and prevents the engagement of RAD51 as well as RAD52 at nuclear foci, leading to toxic DNA-PKcs signaling and hypersensitivity to PARP inhibitors. The effect is markedly distinct from acute ATR inhibition, which blocks RAD51-mediated repair but not resection and engagement of RAD52. Our findings reveal a key pro-resection function for ATR and define how ATR inhibitors can be used for effective manipulation of DNA end resection capacity and DNA repair outcomes in cancer cells.

6.
EMBO J ; 38(18): e101801, 2019 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-31393028

RESUMO

From bacteria to mammalian cells, damaged DNA is sensed and targeted by DNA repair pathways. In eukaryotes, kinases play a central role in coordinating the DNA damage response. DNA damage signaling kinases were identified over two decades ago and linked to the cell cycle checkpoint concept proposed by Weinert and Hartwell in 1988. Connections between the DNA damage signaling kinases and DNA repair were scant at first, and the initial perception was that the importance of these kinases for genome integrity was largely an indirect effect of their roles in checkpoints, DNA replication, and transcription. As more substrates of DNA damage signaling kinases were identified, it became clear that they directly regulate a wide range of DNA repair factors. Here, we review our current understanding of DNA damage signaling kinases, delineating the key substrates in budding yeast and humans. We trace the progress of the field in the last 30 years and discuss our current understanding of the major substrate regulatory mechanisms involved in checkpoint responses and DNA repair.


Assuntos
Reparo do DNA , Proteínas Quinases/metabolismo , Animais , Dano ao DNA , Humanos , Saccharomycetales/enzimologia , Transdução de Sinais
7.
DNA Repair (Amst) ; 68: 68-74, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30017059

RESUMO

Cas9 endonuclease from S. pyogenes is widely used to induce controlled double strand breaks (DSB) at desired genomic loci for gene editing. Here, we describe a droplet digital PCR (ddPCR) method to precisely quantify the kinetic of formation and 5'-end nucleolytic processing of Cas9-induced DSB in different human cells lines. Notably, DSB processing is a finely regulated process, which dictates the choice between non-homologous end joining (NHEJ) and homology directed repair (HDR). This step of DSB repair is also a relevant point to be taken into consideration to improve Cas9-mediated technology. Indeed, by this protocol, we show that processing of Cas9-induced DSB is impaired by CTIP or BRCA1 depletion, while it is accelerated after down-regulation of DNA-PKcs and 53BP1, two DSB repair key factors. In conclusion, the method we describe here can be used to study DSB repair mechanisms, with direct utility for molecularly optimising the knock-out/in outcomes in genome manipulation.


Assuntos
Proteínas Associadas a CRISPR/metabolismo , Quebras de DNA de Cadeia Dupla , Reparo do DNA por Junção de Extremidades , DNA/metabolismo , Reação em Cadeia da Polimerase/métodos , Reparo de DNA por Recombinação , Proteínas Associadas a CRISPR/farmacologia , Proteínas Associadas a CRISPR/toxicidade , Linhagem Celular , DNA/efeitos dos fármacos , Edição de Genes , Humanos , Cinética
8.
J Cell Biol ; 216(3): 623-639, 2017 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-28228534

RESUMO

Genome maintenance and cancer suppression require homologous recombination (HR) DNA repair. In yeast and mammals, the scaffold protein TOPBP1Dpb11 has been implicated in HR, although its precise function and mechanism of action remain elusive. In this study, we show that yeast Dpb11 plays an antagonistic role in recombination control through regulated protein interactions. Dpb11 mediates opposing roles in DNA end resection by coordinating both the stabilization and exclusion of Rad9 from DNA lesions. The Mec1 kinase promotes the pro-resection function of Dpb11 by mediating its interaction with the Slx4 scaffold. Human TOPBP1Dpb11 engages in interactions with the anti-resection factor 53BP1 and the pro-resection factor BRCA1, suggesting that TOPBP1 also mediates opposing functions in HR control. Hyperstabilization of the 53BP1-TOPBP1 interaction enhances the recruitment of 53BP1 to nuclear foci in the S phase, resulting in impaired HR and the accumulation of chromosomal aberrations. Our results support a model in which TOPBP1Dpb11 plays a conserved role in mediating a phosphoregulated circuitry for the control of recombinational DNA repair.


Assuntos
Proteínas de Ciclo Celular/genética , Proteínas de Ligação a DNA/genética , Recombinação Homóloga/genética , Proteínas Nucleares/genética , Reparo de DNA por Recombinação/genética , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/genética , Dano ao DNA/genética , Proteínas Fúngicas/genética , Células HEK293 , Humanos , Fase S/genética , Leveduras
9.
Chromosoma ; 126(1): 45-58, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27165041

RESUMO

Homologous recombination-mediated DNA repair is essential for maintaining genome integrity. It is a multi-step process that involves resection of DNA ends, strand invasion, DNA synthesis and/or DNA end ligation, and finally, the processing of recombination intermediates such as Holliday junctions or other joint molecules. Over the last 15 years, it has been established that the Slx4 protein plays key roles in the processing of recombination intermediates, functioning as a scaffold to coordinate the action of structure-specific endonucleases. Recent work in budding yeast has uncovered unexpected roles for Slx4 in the initial step of DNA-end resection and in the modulation of DNA damage checkpoint signaling. Here we review these latest findings and discuss the emerging role of yeast Slx4 as an important coordinator of DNA damage signaling responses and a regulator of multiple steps in homologous recombination-mediated repair.


Assuntos
Pontos de Checagem do Ciclo Celular , Endodesoxirribonucleases/metabolismo , Recombinação Homóloga , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , Proteínas de Ciclo Celular/metabolismo , Dano ao DNA , Reparo do DNA , Endodesoxirribonucleases/genética , Fosforilação , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Transdução de Sinais
10.
Nucleic Acids Res ; 44(2): 669-82, 2016 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-26490958

RESUMO

The DNA damage checkpoint pathway is activated in response to DNA lesions and replication stress to preserve genome integrity. However, hyper-activation of this surveillance system is detrimental to the cell, because it might prevent cell cycle re-start after repair, which may also lead to senescence. Here we show that the scaffold proteins Slx4 and Rtt107 limit checkpoint signalling at a persistent double-strand DNA break (DSB) and at uncapped telomeres. We found that Slx4 is recruited within a few kilobases of an irreparable DSB, through the interaction with Rtt107 and the multi-BRCT domain scaffold Dpb11. In the absence of Slx4 or Rtt107, Rad9 binding near the irreparable DSB is increased, leading to robust checkpoint signalling and slower nucleolytic degradation of the 5' strand. Importantly, in slx4Δ sae2Δ double mutant cells these phenotypes are exacerbated, causing a severe Rad9-dependent defect in DSB repair. Our study sheds new light on the molecular mechanism that coordinates the processing and repair of DSBs with DNA damage checkpoint signalling, preserving genome integrity.


Assuntos
Quebras de DNA de Cadeia Dupla , Endodesoxirribonucleases/metabolismo , Proteínas Nucleares/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Camptotecina/farmacologia , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Enzimas Reparadoras do DNA/genética , Enzimas Reparadoras do DNA/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Endodesoxirribonucleases/genética , Endonucleases/genética , Endonucleases/metabolismo , Metanossulfonato de Metila/farmacologia , Mutação , Proteínas Nucleares/genética , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Transdução de Sinais , Telômero/genética , Telômero/metabolismo , Inibidores da Topoisomerase I/farmacologia
11.
PLoS Genet ; 11(1): e1004928, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25569305

RESUMO

The Mre11-Rad50-Xrs2 nuclease complex, together with Sae2, initiates the 5'-to-3' resection of Double-Strand DNA Breaks (DSBs). Extended 3' single stranded DNA filaments can be exposed from a DSB through the redundant activities of the Exo1 nuclease and the Dna2 nuclease with the Sgs1 helicase. In the absence of Sae2, Mre11 binding to a DSB is prolonged, the two DNA ends cannot be kept tethered, and the DSB is not efficiently repaired. Here we show that deletion of the yeast 53BP1-ortholog RAD9 reduces Mre11 binding to a DSB, leading to Rad52 recruitment and efficient DSB end-tethering, through an Sgs1-dependent mechanism. As a consequence, deletion of RAD9 restores DSB repair either in absence of Sae2 or in presence of a nuclease defective MRX complex. We propose that, in cells lacking Sae2, Rad9/53BP1 contributes to keep Mre11 bound to a persistent DSB, protecting it from extensive DNA end resection, which may lead to potentially deleterious DNA deletions and genome rearrangements.


Assuntos
Proteínas de Ciclo Celular/genética , Quebras de DNA de Cadeia Dupla , Reparo do DNA por Junção de Extremidades/genética , Endodesoxirribonucleases/genética , Exodesoxirribonucleases/genética , Recombinação Homóloga/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Ciclo Celular/metabolismo , DNA de Cadeia Simples/genética , Proteínas de Ligação a DNA/genética , Endodesoxirribonucleases/metabolismo , Endonucleases/genética , Endonucleases/metabolismo , Exodesoxirribonucleases/metabolismo , Mutação , Proteína Rad52 de Recombinação e Reparo de DNA/genética , Proteína Rad52 de Recombinação e Reparo de DNA/metabolismo , RecQ Helicases/genética , RecQ Helicases/metabolismo , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...