Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
J Exp Bot ; 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38618744

RESUMO

Partial resistance to multiple biotrophic fungal pathogens in wheat (Triticum aestivum L.) is conferred by a variant of the Lr67 gene, which encodes a hexose-proton symporter. Two mutations (G144R, V387L) differentiate the resistant and susceptible protein variants (Lr67res and Lr67sus). Lr67res lacks sugar transport capability and was associated with anion transporter-like properties when expressed in Xenopus laevis oocytes. Here, we extended this functional characterization to include yeast and in planta studies. The Lr67res allele, but not Lr67sus, induced sensitivity to ions in yeast (including NaCl, LiCl, KI), which is consistent with our previous observations that Lr67res expression in oocytes induces novel ion fluxes. We demonstrate that another naturally occurring single amino acid variant in wheat, containing only the Lr67G144R mutation, confers rust resistance. Transgenic barley plants expressing the orthologous HvSTP13 gene carrying the G144R and V387L mutations were also more resistant to Puccinia hordei infection. NaCl treatment of pot-grown adult wheat plants with the Lr67res allele induced leaf tip necrosis and partial leaf rust resistance. An Lr67res-like function can be introduced into orthologous plant hexose transporters via single amino acid mutation, highlighting the strong possibility of generating disease resistance in other crops, especially with gene editing.

2.
Plant Physiol ; 192(2): 1254-1267, 2023 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-36806945

RESUMO

Many disease resistance genes in wheat (Triticum aestivum L.) confer strong resistance to specific pathogen races or strains, and only a small number of genes confer multipathogen resistance. The Leaf rust resistance 67 (Lr67) gene fits into the latter category as it confers partial resistance to multiple biotrophic fungal pathogens in wheat and encodes a Sugar Transport Protein 13 (STP13) family hexose-proton symporter variant. Two mutations (G144R, V387L) in the resistant variant, Lr67res, differentiate it from the susceptible Lr67sus variant. The molecular function of the Lr67res protein is not understood, and this study aimed to broaden our knowledge on this topic. Biophysical analysis of the wheat Lr67sus and Lr67res protein variants was performed using Xenopus laevis oocytes as a heterologous expression system. Oocytes injected with Lr67sus displayed properties typically associated with proton-coupled sugar transport proteins-glucose-dependent inward currents, a Km of 110 ± 10 µM glucose, and a substrate selectivity permitting the transport of pentoses and hexoses. By contrast, Lr67res induced much larger sugar-independent inward currents in oocytes, implicating an alternative function. Since Lr67res is a mutated hexose-proton symporter, the possibility of protons underlying these currents was investigated but rejected. Instead, currents in Lr67res oocytes appeared to be dominated by anions. This conclusion was supported by electrophysiology and 36Cl- uptake studies and the similarities with oocytes expressing the known chloride channel from Torpedo marmorata, TmClC-0. This study provides insights into the function of an important disease resistance gene in wheat, which can be used to determine how this gene variant underpins disease resistance in planta.


Assuntos
Resistência à Doença , Triticum , Resistência à Doença/genética , Triticum/metabolismo , Cloro/metabolismo , Radioisótopos/metabolismo , Proteínas de Transporte de Monossacarídeos/genética , Prótons , Oócitos/metabolismo , Hexoses/metabolismo , Glucose , Açúcares , Doenças das Plantas/genética , Doenças das Plantas/microbiologia
3.
Plant Physiol ; 179(4): 1285-1297, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30305371

RESUMO

Fungal pathogens are a major constraint to global crop production; hence, plant genes encoding pathogen resistance are important tools for combating disease. A few resistance genes identified to date provide partial, durable resistance to multiple pathogens and the wheat (Triticum aestivum) Lr67 hexose transporter variant (Lr67res) fits into this category. Two amino acids differ between the wild-type and resistant alleles - G144R and V387L. Exome sequence data from 267 barley (Hordeum vulgare) landraces and wild accessions was screened and neither of the Lr67res mutations was detected. The barley ortholog of Lr67, HvSTP13, was functionally characterized in yeast as a high affinity hexose transporter. The G144R mutation was introduced into HvSTP13 and abolished Glc uptake, whereas the V387L mutation reduced Glc uptake by ∼ 50%. Glc transport by HvSTP13 heterologously expressed in yeast was reduced when coexpressed with Lr67res Stable transgenic Lr67res barley lines exhibited seedling resistance to the barley-specific pathogens Puccinia hordei and Blumeria graminis f. sp. hordei, which cause leaf rust and powdery mildew, respectively. Barley plants expressing Lr67res exhibited early senescence and higher pathogenesis-related (PR) gene expression. Unlike previous observations implicating flavonoids in the resistance of transgenic sorghum (Sorghum bicolor) expressing Lr34res, another wheat multipathogen resistance gene, barley flavonoids are unlikely to have a role in Lr67res-mediated resistance. Similar to observations made in yeast, Lr67res reduced Glc uptake in planta These results confirm that the pathway by which Lr67res confers resistance to fungal pathogens is conserved between wheat and barley.


Assuntos
Hordeum/imunologia , Proteínas de Transporte de Monossacarídeos/fisiologia , Triticum/genética , Flavonoides/metabolismo , Expressão Gênica , Hordeum/genética , Hordeum/metabolismo , Mutação , Doenças das Plantas/imunologia , Imunidade Vegetal , Proteínas de Plantas/fisiologia , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/imunologia , Plantas Geneticamente Modificadas/metabolismo
4.
Methods Mol Biol ; 1659: 265-274, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28856658

RESUMO

Recently, the Lr67 resistance gene was identified as a hexose transporter variant which confers adult plant rust and mildew resistance in wheat. Methodologies used to characterize the protein encoded by Lr67 may be of use to non-transporter experts conducting similar experiments with other hexose transporters. Hence, in this chapter, we detail a protocol for the functional characterization of hexose transporter proteins in the Saccharomyces cerevisiae expression system. We also provide guidance on the use of metabolic inhibitors and competing sugars to probe transporter structural features, energization, and specificity.


Assuntos
Expressão Gênica , Proteínas de Transporte de Monossacarídeos/genética , Doenças das Plantas/genética , Proteínas de Plantas/genética , Saccharomyces cerevisiae/genética , Triticum/genética , Basidiomycota/fisiologia , Transporte Biológico , Técnicas de Cultura de Células/métodos , Resistência à Doença , Genes de Plantas , Hexoses/metabolismo , Proteínas de Transporte de Monossacarídeos/metabolismo , Doenças das Plantas/microbiologia , Proteínas de Plantas/metabolismo , Saccharomyces cerevisiae/metabolismo , Triticum/metabolismo , Triticum/microbiologia
5.
Plant J ; 49(4): 750-64, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17253986

RESUMO

A suite of newly discovered sucrose transporter genes, PsSUF1, PsSUF4, PvSUT1 and PvSUF1, were isolated from the coats of developing pea (Pisum sativum L.) and bean (Phaseolus vulgaris L.) seeds. Sequence analysis indicated that deduced proteins encoded by PsSUF1, PvSUT1 and PvSUF1 clustered in a separate sub-group under sucrose transporter Clade I, whereas the deduced protein encoded by PsSUF4 clustered in Clade II. When expressed in yeast, these genes were shown to encode sucrose transporters with apparent Michaelis Menten constant (Km) values ranging from 8.9 to 99.8 mm. PvSUT1 exhibited functional characteristics of a sucrose/H+ symporter. In contrast, PsSUF1, PvSUF1 and PsSUF4 supported the pH- and energy independent transport of sucrose that was shown to be bi-directional. These transport properties, together with that of counter transport, indicated that PsSUF1, PvSUF1 and PsSUF4 function as carriers that support the facilitated diffusion of sucrose. Carrier function was unaffected by diethylpyrocarbonate and by maltose competition, suggesting that the sucrose binding sites of these transporters differed from those of known sucrose/H+ symporters. All sucrose transporters were expressed throughout the plant and, of greatest interest, were co-expressed in cells considered responsible for sucrose efflux from seed coats. The possible roles played by the novel facilitators in sucrose efflux from seed coats are discussed.


Assuntos
Fabaceae/genética , Proteínas de Membrana Transportadoras/genética , Sementes/genética , Sacarose/metabolismo , Sequência de Aminoácidos , Transporte Biológico , DNA Complementar/química , DNA Complementar/genética , Fabaceae/crescimento & desenvolvimento , Fabaceae/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Concentração de Íons de Hidrogênio , Proteínas de Membrana Transportadoras/fisiologia , Dados de Sequência Molecular , Pisum sativum/genética , Pisum sativum/crescimento & desenvolvimento , Pisum sativum/metabolismo , Filogenia , Sementes/crescimento & desenvolvimento , Sementes/metabolismo , Análise de Sequência de DNA , Homologia de Sequência de Aminoácidos
6.
Funct Plant Biol ; 34(4): 314-331, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-32689358

RESUMO

Interest in nutrient loading of seeds is fuelled by its central importance to plant reproductive success and human nutrition. Rates of nutrient loading, imported through the phloem, are regulated by transport and transfer processes located in sources (leaves, stems, reproductive structures), phloem pathway and seed sinks. During the early phases of seed development, most control is likely to be imposed by a low conductive pathway of differentiating phloem cells serving developing seeds. Following the onset of storage product accumulation by seeds, and, depending on nutrient species, dominance of path control gives way to regulation by processes located in sources (nitrogen, sulfur, minor minerals), phloem path (transition elements) or seed sinks (sugars and major mineral elements, such as potassium). Nutrients and accompanying water are imported into maternal seed tissues and unloaded from the conducting sieve elements into an extensive post-phloem symplasmic domain. Nutrients are released from this symplasmic domain into the seed apoplasm by poorly understood membrane transport mechanisms. As seed development progresses, increasing volumes of imported phloem water are recycled back to the parent plant by process(es) yet to be discovered. However, aquaporins concentrated in vascular and surrounding parenchyma cells of legume seed coats could provide a gated pathway of water movement in these tissues. Filial cells, abutting the maternal tissues, take up nutrients from the seed apoplasm by membrane proteins that include sucrose and amino acid/H+ symporters functioning in parallel with non-selective cation channels. Filial demand for nutrients, that comprise the major osmotic species, is integrated with their release and phloem import by a turgor-homeostat mechanism located in maternal seed tissues. It is speculated that turgors of maternal unloading cells are sensed by the cytoskeleton and transduced by calcium signalling cascades.

7.
Funct Plant Biol ; 32(11): 987-995, 2005 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32689194

RESUMO

Cotyledons of broad bean (Vicia faba L.) develop in an apoplasmic environment that shifts in composition from one dominated by hexoses to one dominated by sucrose. During the latter phase of development, sucrose / H+ symporter activity and expression is restricted to cotyledon epidermal transfer cell complexes that support sucrose fluxes that are 8.5-fold higher than those exhibited by the storage parenchyma. In contrast, the flux difference between these cotyledon tissues is only 1.7-fold for hexoses. Glucose and fructose uptake was shown to be sensitive to PCMBS and phloridzin, both of which slow H+-sugar transport. A low Km (or high affinity transporter, HAT) mechanism transports glucose and glucose-analogues exclusively. No HAT system for fructose could be found. A high Km (low affinity transporter, LAT) mechanism transports a broader range of hexoses, including glucose and fructose. Consistent with glucose and fructose transport being H+-coupled, their uptake was inhibited by dissipating the proton motive force (pmf) by treating cotyledons with carbonyl cyanide m-chlorophenol hydrazone, propionic acid or tetraphenylphosphonium ion. Erythrosin B inhibited hexose uptake, indicating a role for the P-type H+-ATPase in establishing the pmf. It is concluded that H+-coupled glucose and fructose transport mechanisms occur at plasma membranes of dermal transfer cell complexes and storage parenchyma cells. These transport mechanisms are active during pre- and storage phases of cotyledon development. However, hexose symport only makes a quantitative contribution to cotyledon biomass gain during the pre-storage stage of development.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...