Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Environ Radioact ; 237: 106682, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34148005

RESUMO

The supply of K, being the chemical analog of Cs, affects the phytotransfer of radiocesium such as 137Cs from contaminated soils and its accumulation in plant tissues. Since K and Cs have high affinity to the same clay particle surfaces, the presence of potassium-solubilizing bacteria (KSB) could increase the availability of not only K+ in the rhizosphere but also of radiocesium. In this study, we obtained five KSB isolates with the highest solubilization capacities from soybean rhizosphere on modified Aleksandrov medium containing sericite as K source. Based on biochemical and 16S rRNA gene sequence analysis, we identified the bacteria as Bacillus aryabhattai MG774424, Pseudomonas umsongensis MG774425, P. frederiksbergensis MG774426, Burkholderia sabiae MG774427, and P. mandelii MG774428. We evaluated the KSB isolates based on plant growth promotion and 137Cs accumulation in komatsuna (Brassica rapa L. var. Perviridis) grown in three soils collected from Miyanoiri, Takanishi, and Ota contaminated by 137Cs from the Fukushima accident. Inoculation with KSB showed beneficial effects on plant growth and increased the overall plant biomass production (~40%). On the average, KSB inoculation resulted in the removal of 0.07 ± 0.04% of 137Cs from the soil, more than twice the control. But similar to the effect of KSB inoculation on komatsuna biomass production, different KSBs performed variably and exhibited site-specific responses independent of their K-solubilizing capacities, with higher 137Cs phyto-transfer in roots than in shoots. In terms of root transfer factor (TF), values were highest in komatsuna plants grown in Miyanoiri and Ota soils inoculated with P. frederiksbergensis and Burkholderia sabiae, while they were highest in Takanishi soils inoculated with Bacillus aryabhattai and P. umsongensis. These TF values were also much higher than previously reported values for komatsuna grown in 137Cs-contaminated Fukushima soils inoculated with other rhizobacteria. Thus, KSB inoculation significantly enhance not only the growth of komatsuna but 137Cs uptake.


Assuntos
Brassica rapa , Monitoramento de Radiação , Poluentes Radioativos do Solo , Bacillus , Bactérias/genética , Biodegradação Ambiental , Burkholderiaceae , Radioisótopos de Césio/análise , Potássio , Pseudomonas , RNA Ribossômico 16S , Solo , Poluentes Radioativos do Solo/análise
2.
Environ Sci Pollut Res Int ; 28(14): 17146-17157, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33394442

RESUMO

The natural abundance of Cr and Ni in serpentine soils is well-known, but the food safety of rice grown in these hazardous paddy soils is poorly understood. The study evaluated the bioaccumulation of chromium (Cr) and nickel (Ni) in rice (Oryza sativa) grown in serpentine-derived paddy soils in the Philippines. Surface soil (0-20 cm) samples were collected and characterized across three (i.e., Masinloc, Candelaria, and Sta. Cruz) paddy areas in Luzon Island, Philippines. At least 3 to 4 whole rice plants at mature stage were uprooted manually in each sampling point where the soil samples were collected. The total Cr and Ni concentrations in rice (i.e., roots, shoots, and grains) and soil, soil physicochemical properties, bioaccumulation factor (BAF), translocation factor (TF), and the hazard quotients (HQ) were determined. Results revealed that Cr and Ni in rice were accumulated mostly in the roots. Although paddy soils had elevated total Cr and Ni concentrations, the BAF and soil-to-root TF values for Cr and Ni were < 1. In terms of human health risks, results further revealed low risk for both male and female Filipino adults as HQ values for Cr and Ni were < 1. While it is safe to consume rice grown in the area in terms of Cr and Ni dietary intake, more studies are necessary to understand the dynamics and bioavailability of these heavy metals in other crops and drinking water from tube wells in these areas in order to provide a more holistic human health-based assessments and to ensure consumer safety in serpentine areas. In addition, a more reliable data on Cr and Ni speciation in serpentine soils and crops is critically important. Further studies are also needed to understand the contribution of bioavailable heavy metals in improving the soil health to achieve food safety.


Assuntos
Metais Pesados , Oryza , Poluentes do Solo , Bioacumulação , Cromo , Feminino , Humanos , Masculino , Metais Pesados/análise , Níquel , Filipinas , Medição de Risco , Solo , Poluentes do Solo/análise
3.
Environ Monit Assess ; 191(8): 485, 2019 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-31280379

RESUMO

The limited carrying capacities of shallow tropical lakes render them more vulnerable to ecological problems like eutrophication. Unregulated human activities such as unsustainable aquaculture and urbanization can alter ecosystem dynamics rapidly, and this warrants more comprehensive researches than what has been previously conducted. Here, we presented an integrated assessment of the nutrient dynamics, phytoplankton diversity, and sediment geochemistry in Lake Palakpakin, a shallow tropical lake of volcanic origin, to understand its deteriorating ecological state. Water, phytoplankton, and sediment samples were collected, and in situ water quality measurements were done during wet and dry seasons in four critical areas in the lake, namely, the inlet, center, sanctuary, and outlet. Results revealed that high light extinction coefficient (1.13 m-1), high turbidity (28 NTU), high phosphate concentration (> 2.0.5 mg/L), and the abundance of Microcystis aeruginosa, Anabaena helicoidea, and Lyngbya sp. indicate that from a relatively healthy lake in 2008, Lake Palakpakin has become a eutrophic to hypereutrophic freshwater body. High concentrations of available nutrients such as N and P were detected in the center and sanctuary sediments, which drive the internal nutrient loading in the lake. We recommend that management efforts be directed towards a whole-ecosystem approach in addressing the problem of eutrophication, especially in shallow tropical lakes.


Assuntos
Monitoramento Ambiental , Lagos/química , Fitoplâncton/crescimento & desenvolvimento , Biodiversidade , Conservação dos Recursos Naturais , Cianobactérias , Ecossistema , Eutrofização , Sedimentos Geológicos/química , Microcystis , Filipinas , Fósforo/análise , Estações do Ano , Poluentes da Água/análise , Qualidade da Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...