Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Pharmacol ; 15: 1394685, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38818373

RESUMO

Breast cancer brain metastasis (BCBM) typically results in an end-stage diagnosis and is hindered by a lack of brain-penetrant drugs. Tumors in the brain rely on the conversion of acetate to acetyl-CoA by the enzyme acetyl-CoA synthetase 2 (ACSS2), a key regulator of fatty acid synthesis and protein acetylation. Here, we used a computational pipeline to identify novel brain-penetrant ACSS2 inhibitors combining pharmacophore-based shape screen methodology with absorption, distribution, metabolism, and excretion (ADME) property predictions. We identified compounds AD-5584 and AD-8007 that were validated for specific binding affinity to ACSS2. Treatment of BCBM cells with AD-5584 and AD-8007 leads to a significant reduction in colony formation, lipid storage, acetyl-CoA levels and cell survival in vitro. In an ex vivo brain-tumor slice model, treatment with AD-8007 and AD-5584 reduced pre-formed tumors and synergized with irradiation in blocking BCBM tumor growth. Treatment with AD-8007 reduced tumor burden and extended survival in vivo. This study identifies selective brain-penetrant ACSS2 inhibitors with efficacy towards breast cancer brain metastasis.

2.
Structure ; 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38749445

RESUMO

Orthomyxoviruses, such as influenza and thogotoviruses, are important human and animal pathogens. Their segmented viral RNA genomes are wrapped by viral nucleoproteins (NPs) into helical ribonucleoprotein complexes (RNPs). NP structures of several influenza viruses have been reported. However, there are still contradictory models of how orthomyxovirus RNPs are assembled. Here, we characterize the crystal structure of Thogoto virus (THOV) NP and found striking similarities to structures of influenza viral NPs, including a two-lobed domain architecture, a positively charged RNA-binding cleft, and a tail loop important for trimerization and viral transcription. A low-resolution cryo-electron tomography reconstruction of THOV RNPs elucidates a left-handed double helical assembly. By providing a model for RNP assembly of THOV, our study suggests conserved NP assembly and RNA encapsidation modes for thogoto- and influenza viruses.

3.
J Med Virol ; 96(4): e29594, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38576317

RESUMO

The HIV capsid (CA) protein is a promising target for anti-AIDS treatment due to its critical involvement in viral replication. Herein, we utilized the well-documented CA inhibitor PF74 as our lead compound and designed a series of low-molecular-weight phenylalanine derivatives. Among them, compound 7t exhibited remarkable antiviral activity with a high selection index (EC50 = 0.040 µM, SI = 2815), surpassing that of PF74 (EC50 = 0.50 µM, SI = 258). Furthermore, when evaluated against the HIV-2 strain, 7t (EC50 = 0.13 µM) demonstrated approximately 14-fold higher potency than that of PF74 (EC50 = 1.76 µM). Insights obtained from surface plasmon resonance (SPR) revealed that 7t exhibited stronger target affinity to the CA hexamer and monomer in comparison to PF74. The potential interactions between 7t and the HIV-1 CA were further elucidated using molecular docking and molecular dynamics simulations, providing a plausible explanation for the enhanced target affinity with 7t over PF74. Moreover, the metabolic stability assay demonstrated that 7t (T1/2 = 77.0 min) significantly outperforms PF74 (T1/2 = 0.7 min) in human liver microsome, exhibiting an improvement factor of 110-fold. In conclusion, 7t emerges as a promising drug candidate warranting further investigation.


Assuntos
Fármacos Anti-HIV , Soropositividade para HIV , Humanos , Capsídeo/metabolismo , Fenilalanina/farmacologia , Fenilalanina/metabolismo , Simulação de Acoplamento Molecular , Fármacos Anti-HIV/farmacologia , Proteínas do Capsídeo/metabolismo , Antirretrovirais
4.
J Med Chem ; 66(23): 16303-16329, 2023 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-38054267

RESUMO

Optimization of compound 11L led to the identification of novel HIV capsid modulators, quinazolin-4-one-bearing phenylalanine derivatives, displaying potent antiviral activities against both HIV-1 and HIV-2. Notably, derivatives 12a2 and 21a2 showed significant improvements, with 2.5-fold over 11L and 7.3-fold over PF74 for HIV-1, and approximately 40-fold over PF74 for HIV-2. The X-ray co-crystal structures confirmed the multiple pocket occupation of 12a2 and 21a2 in the binding site. Mechanistic studies revealed a dual-stage inhibition profile, where the compounds disrupted capsid-host factor interactions at the early stage and promoted capsid misassembly at the late stage. Remarkably, 12a2 and 21a2 significantly promoted capsid misassembly, outperforming 11L, PF74, and LEN. The substitution of easily metabolized amide bond with quinolin-4-one marginally enhanced the stability of 12a2 in human liver microsomes compared to controls. Overall, 12a2 and 21a2 highlight their potential as potent HIV capsid modulators, paving the way for future advancements in anti-HIV drug design.


Assuntos
Fármacos Anti-HIV , Infecções por HIV , Humanos , Capsídeo/metabolismo , Fenilalanina , Proteínas do Capsídeo/metabolismo , Fármacos Anti-HIV/química , Infecções por HIV/tratamento farmacológico
5.
RSC Med Chem ; 14(7): 1272-1295, 2023 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-37484571

RESUMO

HIV-1 capsid (CA) is an attractive target for its indispensable roles in the viral life cycle. We report the design, synthesis, and mechanistic study of a novel series of 2-piperazineone peptidomimetics as HIV capsid modulators by mimicking the structure of host factors binding to CA. F-Id-3o was the most potent compound from the synthesized series, with an anti-HIV-1 EC50 value of 6.0 µM. However, this series of compounds showed a preference for HIV-2 inhibitory activity, in which Id-3o revealed an EC50 value of 2.5 µM (anti-HIV-2 potency), an improvement over PF74. Interestingly, F-Id-3o did bind HIV-1 CA monomers and hexamers with comparable affinity, unlike PF74, consequently showing antiviral activity in the early and late stages of the HIV-1 lifecycle. Molecular dynamics simulations shed light on F-Id-3o and Id-3o binding modes within the HIV-1/2 CA protein and provide a possible explanation for the increased anti-HIV-2 potency. Metabolic stability assays in human plasma and human liver microsomes indicated that although F-Id-3o has enhanced metabolic stability over PF74, further optimization is necessary. Moreover, we utilized computational prediction of drug-like properties and metabolic stability of F-Id-3o and PF74, which correlated well with experimentally derived metabolic stability, providing an efficient computational pipeline for future preselection based on metabolic stability prediction. Overall, the 2-piperazineone-bearing peptidomimetics are a promising new chemotype in the CA modulators class with considerable optimization potential.

6.
Expert Opin Drug Discov ; 18(1): 5-12, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36480372

RESUMO

INTRODUCTION: Although combination antiretroviral therapy (cART) has achieved significant success in treating HIV, the emergence of multidrug-resistant viruses and cumulative medication toxicity make it necessary to find new classes of antiretroviral agents with novel mechanisms of action. With high sequence conservation, the HIV-1 capsid (CA) protein has attracted attention as a prospective therapeutic target due to its crucial structural and regulatory functions in the HIV-1 replication cycle. AREA COVERED: Herein, the authors provide a cutting-edge overview of current advances in the design and discovery of CA modulators, PF74, GS-6207 and their derivativeswhich targets a therapeutically attractive NTD-CTD interprotomer pocket within the hexameric configuration of HIV-1 CA. The discovery and development of these compounds, and derivatives thereof, have provided valuable information for the design of second-generation CA-targeting antivirals. EXPERT OPINION: Despite some successes in designing and discovering HIV-1 CA modulators, more studies are required to decipher which chemical groups confer specific desirable properties. The future of CA-modulating compounds may lie in covalent inhibition and the creation of proteolysis-targeting chimeras (PROTACs). Moreover, biological interrogation of the process of CA uncoating, virus-host interactions, and studies on the lattice-binding restriction factors may improve our knowledge of HIV-1 CA and support the design of new antiviral agents.


Assuntos
Fármacos Anti-HIV , HIV-1 , Humanos , Fármacos Anti-HIV/farmacologia , Capsídeo/metabolismo , Proteínas do Capsídeo/metabolismo , HIV-1/metabolismo , Replicação Viral
7.
bioRxiv ; 2023 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-38187734

RESUMO

Breast-cancer brain metastasis (BCBM) poses a significant clinical challenge, resulting in an end-stage diagnosis and hindered by limited therapeutic options. The blood-brain barrier (BBB) acts as an anatomical and physiological hurdle for therapeutic compounds, restricting the effective delivery of therapies to the brain. In order to grow and survive in a nutrient-poor environment, tumors in the brain must adapt to their metabolic needs, becoming highly dependent on acetate. These tumors rely on the conversion of acetate to acetyl-CoA by the enzyme Acetyl-CoA synthetase 2 (ACSS2), a key metabolic enzyme involved in regulating fatty acid synthesis and protein acetylation in tumor cells. ACSS2 has emerged as a crucial enzyme required for the growth of tumors in the brain. Here, we utilized a computational pipeline, combining pharmacophore-based shape screen methodology with ADME property predictions to identify novel brain-permeable ACSS2 inhibitors. From a small molecule library, this approach identified 30 potential ACSS2 binders, from which two candidates, AD-5584 and AD-8007, were validated for their binding affinity, predicted metabolic stability, and, notably, their ability to traverse the BBB. We show that treatment of BCBM cells, MDA-MB-231BR, with AD-5584 and AD-8007 leads to a significant reduction in lipid storage, reduction in colony formation, and increase in cell death in vitro . Utilizing an ex vivo orthotopic brain-slice tumor model, we show that treatment with AD-8007 and AD-5584 significantly reduces tumor size and synergizes with radiation in blocking BCBM tumor growth ex vivo. Importantly, we show that following intraperitoneal injections with AD-5584 and AD-8007, we can detect these compounds in the brain, confirming their BBB permeability. Thus, we have identified and validated novel ACSS2 inhibitor candidates for further drug development and optimization as agents for treating patients with breast cancer brain metastasis.

8.
Molecules ; 27(23)2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36500508

RESUMO

HIV-1 capsid (CA) performs multiple roles in the viral life cycle and is a promising target for antiviral development. In this work, we describe the design, synthesis, assessment of antiviral activity, and mechanistic investigation of 20 piperazinone phenylalanine derivatives with a terminal indole or benzene ring. Among them, F2-7f exhibited moderate anti-HIV-1 activity with an EC50 value of 5.89 µM, which was slightly weaker than the lead compound PF74 (EC50 = 0.75 µM). Interestingly, several compounds showed a preference for HIV-2 inhibitory activity, represented by 7f with an HIV-2 EC50 value of 4.52 µM and nearly 5-fold increased potency over anti-HIV-1 (EC50 = 21.81 µM), equivalent to PF74 (EC50 = 4.16 µM). Furthermore, F2-7f preferred to bind to the CA hexamer rather than to the monomer, similar to PF74, according to surface plasmon resonance results. Molecular dynamics simulation indicated that F2-7f and PF74 bound at the same site. Additionally, we computationally analyzed the ADMET properties for 7f and F2-7f. Based on this analysis, 7f and F2-7f were predicted to have improved drug-like properties and metabolic stability over PF74, and no toxicities were predicted based on the chemotype of 7f and F2-7f. Finally, the experimental metabolic stability results of F2-7f in human liver microsomes and human plasma moderately correlated with our computational prediction. Our findings show that F2-7f is a promising small molecule targeting the HIV-1 CA protein with considerable development potential.


Assuntos
Fármacos Anti-HIV , HIV-1 , Humanos , Benzeno , Fenilalanina , HIV-1/metabolismo , Proteínas do Capsídeo/metabolismo
9.
Molecules ; 27(21)2022 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-36364467

RESUMO

The AIDS pandemic is still of importance. HIV-1 and HIV-2 are the causative agents of this pandemic, and in the absence of a viable vaccine, drugs are continually required to provide quality of life for infected patients. The HIV capsid (CA) protein performs critical functions in the life cycle of HIV-1 and HIV-2, is broadly conserved across major strains and subtypes, and is underexploited. Therefore, it has become a therapeutic target of interest. Here, we report a novel series of 2-pyridone-bearing phenylalanine derivatives as HIV capsid modulators. Compound FTC-2 is the most potent anti-HIV-1 compound in the new series of compounds, with acceptable cytotoxicity in MT-4 cells (selectivity index HIV-1 > 49.57; HIV-2 > 17.08). However, compound TD-1a has the lowest EC50 in the anti-HIV-2 assays (EC50 = 4.86 ± 1.71 µM; CC50= 86.54 ± 29.24 µM). A water solubility test found that TD-1a showed a moderately increased water solubility compared with PF74, while the water solubility of FTC-2 was improved hundreds of times. Furthermore, we use molecular simulation studies to provide insight into the molecular contacts between the new compounds and HIV CA. We also computationally predict drug-like properties and metabolic stability for FTC-2 and TD-1a. Based on this analysis, TD-1a is predicted to have improved drug-like properties and metabolic stability over PF74. This study increases the repertoire of CA modulators and has important implications for developing anti-HIV agents with novel mechanisms, especially those that inhibit the often overlooked HIV-2.


Assuntos
Fármacos Anti-HIV , HIV-1 , Humanos , Capsídeo , Fenilalanina , Qualidade de Vida , Replicação Viral , HIV-1/metabolismo , Proteínas do Capsídeo/metabolismo , HIV-2/metabolismo , Água/metabolismo , Relação Estrutura-Atividade
10.
Molecules ; 27(18)2022 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-36144727

RESUMO

As a key structural protein, HIV capsid (CA) protein plays multiple roles in the HIV life cycle, and is considered a promising target for anti-HIV treatment. Based on the structural information of CA modulator PF-74 bound to HIV-1 CA hexamer, 18 novel phenylalanine derivatives were synthesized via the Ugi four-component reaction. In vitro anti-HIV activity assays showed that most compounds exhibited low-micromolar-inhibitory potency against HIV. Among them, compound I-19 exhibited the best anti-HIV-1 activity (EC50 = 2.53 ± 0.84 µM, CC50 = 107.61 ± 27.43 µM). In addition, I-14 displayed excellent HIV-2 inhibitory activity (EC50 = 2.30 ± 0.11 µM, CC50 > 189.32 µM) with relatively low cytotoxicity, being more potent than that of the approved drug nevirapine (EC50 > 15.02 µM, CC50 > 15.2 µM). Additionally, surface plasmon resonance (SPR) binding assays demonstrated direct binding to the HIV CA protein. Moreover, molecular docking and molecular dynamics simulations provided additional information on the binding mode of I-19 to HIV-1 CA. In summary, we further explored the structure­activity relationships (SARs) and selectivity of anti-HIV-1/HIV-2 of PF-74 derivatives, which is conducive to discovering efficient anti-HIV drugs.


Assuntos
Fármacos Anti-HIV , HIV-1 , Peptidomiméticos , Fármacos Anti-HIV/química , Capsídeo , Proteínas do Capsídeo/metabolismo , Desenho de Fármacos , HIV-1/metabolismo , Simulação de Acoplamento Molecular , Nevirapina , Peptidomiméticos/farmacologia , Fenilalanina , Relação Estrutura-Atividade
11.
J Med Virol ; 94(12): 5975-5986, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35949003

RESUMO

Human immunodeficiency virus (HIV) capsid (CA) protein is a promising target for developing novel anti-HIV drugs. Starting from highly anticipated CA inhibitors PF-74, we used scaffold hopping strategy to design a series of novel 1,2,4-triazole phenylalanine derivatives by targeting an unexplored region composed of residues 106-109 in HIV-1 CA hexamer. Compound d19 displayed excellent antiretroviral potency against HIV-1 and HIV-2 strains with EC50 values of 0.59 and 2.69 µM, respectively. Additionally, we show via surface plasmon resonance (SPR) spectrometry that d19 preferentially interacts with the hexameric form of CA, with a significantly improved hexamer/monomer specificity ratio (ratio = 59) than PF-74 (ratio = 21). Moreover, we show via SPR that d19 competes with CPSF-6 for binding to CA hexamers with IC50 value of 33.4 nM. Like PF-74, d19 inhibits the replication of HIV-1 NL4.3 pseudo typed virus in both early and late stages. In addition, molecular docking and molecular dynamics simulations provide binding mode information of d19 to HIV-1 CA and rationale for improved affinity and potency over PF-74. Overall, the lead compound d19 displays a distinct chemotype form PF-74, improved CA affinity, and anti-HIV potency.


Assuntos
Fármacos Anti-HIV , Infecções por HIV , HIV-1 , Fármacos Anti-HIV/uso terapêutico , Proteínas do Capsídeo/metabolismo , Infecções por HIV/tratamento farmacológico , HIV-1/química , Humanos , Simulação de Acoplamento Molecular , Fenilalanina/farmacologia , Fenilalanina/uso terapêutico , Triazóis , Replicação Viral
12.
Front Mol Biosci ; 9: 878652, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35755824

RESUMO

Casein kinase 2 (CK2) is an evolutionarily conserved serine/threonine kinase implicated in a wide range of cellular functions and known to be dysregulated in various diseases such as cancer. Compared to most other kinases, CK2 exhibits several unusual properties, including dual co-substrate specificity and a high degree of promiscuity with hundreds of substrates described to date. Most paradoxical, however, is its apparent constitutive activity: no definitive mode of catalytic regulation has thus far been identified. Here we demonstrate that copper enhances the enzymatic activity of CK2 both in vitro and in vivo. We show that copper binds directly to CK2, and we identify specific residues in the catalytic subunit of the enzyme that are critical for copper-binding. We further demonstrate that increased levels of intracellular copper result in enhanced CK2 kinase activity, while decreased copper import results in reduced CK2 activity. Taken together, these findings establish CK2 as a copper-regulated kinase and indicate that copper is a key modulator of CK2-dependent signaling pathways.

13.
Biomolecules ; 12(5)2022 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-35625621

RESUMO

The HIV-1 capsid (CA) protein has emerged as an attractive therapeutic target. However, all inhibitor designs and structural analyses for this essential HIV-1 protein have focused on the clade B HIV-1 (NL4-3) variant. This study creates, overproduces, purifies, and characterizes the CA proteins from clade A1, A2, B, C, and D isolates. These new CA constructs represent novel reagents that can be used in future CA-targeted inhibitor design and to investigate CA proteins' structural and biochemical properties from genetically diverse HIV-1 subtypes. Moreover, we used surface plasmon resonance (SPR) spectrometry and computational modeling to examine inter-clade differences in CA assembly and binding of PF-74, CPSF-6, and NUP-153. Interestingly, we found that HIV-1 CA from clade A1 does not bind to NUP-153, suggesting that the import of CA core structures through the nuclear pore complex may be altered for viruses from this clade. Overall, we have demonstrated that in silico generated models of the HIV-1 CA protein from clades other than the prototypically used clade B have utility in understanding and predicting biology and antiviral drug design and mechanism of action.


Assuntos
HIV-1 , Antivirais , Proteínas do Capsídeo/química , HIV-1/genética , HIV-1/metabolismo
14.
Eur J Med Chem ; 227: 113903, 2022 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-34653770

RESUMO

Further clinical development of PF74, a lead compound targeting HIV-1 capsid, is impeded by low antiviral activity and inferior metabolic stability. By modifying the benzene (region I) and indole of PF74, we identified two potent compounds (7m and 7u) with significantly improved metabolic stability. Compared to PF74, 7u displayed greater metabolic stability in human liver microsomes (HLMs) with half-life (t1/2) 109-fold that of PF74. Moreover, mechanism of action (MOA) studies demonstrated that 7m and 7u effectively mirrored the MOA of compounds that interact within the PF74 interprotomer pocket, showing direct and robust interactions with recombinant CA, and 7u displaying antiviral effects in both the early and late stages of HIV-1 replication. Furthermore, MD simulation corroborated that 7u was bound to the PF74 binding site, and the results of the online molinspiration software predicted that 7m and 7u had desirable physicochemical properties. Unexpectedly, this series of compounds exhibited better antiviral activity than PF74 against HIV-2, represented by compound 7m whose anti-HIV-2 activity was almost 5 times increased potency over PF74. Therefore, we have rationally redesigned the PF74 chemotype to inhibitors with novel structures and enhanced metabolic stability in this study. We hope that these new compounds can serve as a blueprint for developing a new generation of HIV treatment regimens.


Assuntos
Fármacos Anti-HIV/farmacologia , Benzotiazóis/farmacologia , Proteínas do Capsídeo/antagonistas & inibidores , Desenho de Fármacos , HIV-1/efeitos dos fármacos , Fenilalanina/farmacologia , Fármacos Anti-HIV/química , Fármacos Anti-HIV/metabolismo , Benzotiazóis/química , Benzotiazóis/metabolismo , Proteínas do Capsídeo/metabolismo , Relação Dose-Resposta a Droga , Humanos , Testes de Sensibilidade Microbiana , Microssomos Hepáticos/química , Microssomos Hepáticos/metabolismo , Estrutura Molecular , Fenilalanina/química , Fenilalanina/metabolismo , Relação Estrutura-Atividade , Replicação Viral/efeitos dos fármacos
15.
Retrovirology ; 18(1): 31, 2021 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-34627310

RESUMO

BACKGROUND: We previously developed drug-like peptide triazoles (PTs) that target HIV-1 Envelope (Env) gp120, potently inhibit viral entry, and irreversibly inactivate virions. Here, we investigated potential mechanisms of viral escape from this promising class of HIV-1 entry inhibitors. RESULTS: HIV-1 resistance to cyclic (AAR029b) and linear (KR13) PTs was obtained by dose escalation in viral passaging experiments. High-level resistance for both inhibitors developed slowly (relative to escape from gp41-targeted C-peptide inhibitor C37) by acquiring mutations in gp120 both within (Val255) and distant to (Ser143) the putative PT binding site. The similarity in the resistance profiles for AAR029b and KR13 suggests that the shared IXW pharmacophore provided the primary pressure for HIV-1 escape. In single-round infectivity studies employing recombinant virus, V255I/S143N double escape mutants reduced PT antiviral potency by 150- to 3900-fold. Curiously, the combined mutations had a much smaller impact on PT binding affinity for monomeric gp120 (four to ninefold). This binding disruption was entirely due to the V255I mutation, which generated few steric clashes with PT in molecular docking. However, this minor effect on PT affinity belied large, offsetting changes to association enthalpy and entropy. The escape mutations had negligible effect on CD4 binding and utilization during entry, but significantly altered both binding thermodynamics and inhibitory potency of the conformationally-specific, anti-CD4i antibody 17b. Moreover, the escape mutations substantially decreased gp120 shedding induced by either soluble CD4 or AAR029b. CONCLUSIONS: Together, the data suggest that the escape mutations significantly modified the energetic landscape of Env's prefusogenic state, altering conformational dynamics to hinder PT-induced irreversible inactivation of Env. This work therein reveals a unique mode of virus escape for HIV-1, namely, resistance by altering the intrinsic conformational dynamics of the Env trimer.


Assuntos
Fármacos Anti-HIV/farmacologia , Farmacorresistência Viral , Proteína gp120 do Envelope de HIV/química , HIV-1/efeitos dos fármacos , HIV-1/metabolismo , Peptídeos/farmacologia , Triazóis/farmacologia , Fármacos Anti-HIV/química , Sítios de Ligação , Proteína gp120 do Envelope de HIV/genética , Proteína gp120 do Envelope de HIV/metabolismo , Infecções por HIV/virologia , HIV-1/química , HIV-1/genética , Humanos , Simulação de Acoplamento Molecular , Mutação , Peptídeos/química , Conformação Proteica , Triazóis/química , Internalização do Vírus/efeitos dos fármacos
16.
Eur J Med Chem ; 226: 113848, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34592608

RESUMO

HIV-1 capsid (CA) plays indispensable and multiple roles in the life cycle of HIV-1, become an attractive target in antiviral therapy. Herein, we report the design, synthesis, and mechanism study of a novel series of dimerized phenylalanine derivatives as HIV-1 capsid inhibitors using 2-piperazineone or 2,5-piperazinedione as a linker. The structure-activity relationship (SAR) indicated that dimerized phenylalanines were more potent than monomers of the same chemotype. Further, the inclusion of fluorine substituted phenylalanine and methoxyl substituted aniline was found to be beneficial for antiviral activity. From the synthesized series, Q-c4 was found to be the most potent compound with an EC50 value of 0.57 µM, comparable to PF74. Interestingly, Q-c4 demonstrated a slightly higher affinity to the CA monomer than the CA hexamer, commensurate with its more significant effect in the late-stage of the HIV-1 lifecycle. Competitive SPR experiments with peptides from CPSF6 and NUP153 revealed that Q-c4 binds to the interprotomer pocket of hexameric CA as designed. Single-round infection assays showed that Q-c4 interferes with the HIV-1 life cycle in a dual-stage manner, affecting both pre-and post-integration. Stability assays in human plasma and human liver microsomes indicated that although Q-c4 has improved stability over PF74, this kind of inhibitor still requires further optimization. And the results of the online molinspiration software predicted that Q-c4 has desirable physicochemical properties but some properties still have some violation from the Lipinski rule of five. Overall, the dimerized phenylalanines are promising novel platforms for developing future HIV-1 CA inhibitors with considerable potential for optimization.


Assuntos
Fármacos Anti-HIV/farmacologia , Proteínas do Capsídeo/antagonistas & inibidores , Desenho de Fármacos , HIV-1/efeitos dos fármacos , Fenilalanina/farmacologia , Fármacos Anti-HIV/síntese química , Fármacos Anti-HIV/química , Proteínas do Capsídeo/metabolismo , Dimerização , Relação Dose-Resposta a Droga , Humanos , Testes de Sensibilidade Microbiana , Microssomos Hepáticos/química , Microssomos Hepáticos/metabolismo , Simulação de Dinâmica Molecular , Estrutura Molecular , Fenilalanina/síntese química , Fenilalanina/química , Relação Estrutura-Atividade , Ressonância de Plasmônio de Superfície
17.
Bioorg Med Chem ; 48: 116414, 2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34562701

RESUMO

The HIV-1 Capsid (CA) is considered as a promising target for the development of potent antiviral drugs, due to its multiple roles during the viral life cycle. Herein, we report the design, synthesis, and antiviral activity evaluation of series of novel phenylalanine derivatives as HIV-1 CA protein inhibitors. Among them, 4-methoxy-N-methylaniline substituted phenylalanine (II-13c) and indolin-5-amine substituted phenylalanine (V-25i) displayed exceptional anti-HIV-1 activity with the EC50 value of 5.14 and 2.57 µM respectively, which is slightly weaker than that of lead compound PF-74 (EC50 = 0.42 µM). Besides, surface plasmon resonance (SPR) binding assay demonstrated II-13c and V-25i prefer to combine with CA hexamer rather than monomer, which is similar to PF-74. Subsequently, molecular dynamics simulation (MD) revealed potential interactions between representative compounds with HIV-1 CA hexamer. Overall, this work laid a solid foundation for further structural optimization to discover novel promising HIV-1 CA inhibitors.


Assuntos
Fármacos Anti-HIV/farmacologia , Proteínas do Capsídeo/antagonistas & inibidores , Desenho de Fármacos , HIV-1/efeitos dos fármacos , Fenilalanina/farmacologia , Fármacos Anti-HIV/síntese química , Fármacos Anti-HIV/química , Proteínas do Capsídeo/metabolismo , Células Cultivadas , Relação Dose-Resposta a Droga , HIV-1/metabolismo , Humanos , Testes de Sensibilidade Microbiana , Simulação de Dinâmica Molecular , Estrutura Molecular , Fenilalanina/síntese química , Fenilalanina/química , Relação Estrutura-Atividade , Replicação Viral/efeitos dos fármacos
18.
Biomolecules ; 11(9)2021 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-34572507

RESUMO

The HIV-1 Gag polyprotein plays essential roles during the late stage of the HIV-1 replication cycle, and has recently been identified as a promising therapeutic target. The N-terminal portion of the HIV-1 Gag polyprotein encodes the myristoylated matrix (MA) protein, which functions in the trafficking of the structural proteins to the plasma membrane (PM) and facilitation of envelope incorporation into budding virus. Numerous host cell proteins interact with the MA portion of the Gag polyprotein during this process. One such factor is the ubiquitous calcium-binding protein calmodulin (CaM), which interacts preferentially with myristoylated proteins, thereby regulating cell physiology. The exact role of this interaction is poorly understood to date. Atomic resolution structures revealed the nature of the CaM-MA interaction for clade B isolates. In this study, we expanded our knowledge and characterized biophysically and computationally the CaM interaction with MA from other HIV-1 clades and discovered differences in the CaM recognition as compared to the prototypical clade B MA, with significant alterations in the interaction with the MA protein from clade C. Structural investigation and in silico mutational analysis revealed that HIV-1 MA protein from clade C, which is responsible for the majority of global HIV-1 infections, interacts with lower affinity and altered kinetics as compared to the canonical clade B. This finding may have implications for additional altered interaction networks as compared to the well-studied clade B. Our analysis highlights the importance of expanding investigations of virus-host cell factor interaction networks to other HIV-1 clades.


Assuntos
Calmodulina/metabolismo , HIV-1/metabolismo , Proteínas da Matriz Viral/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Calmodulina/química , Sequência Conservada , Humanos , Modelos Moleculares , Ácido Mirístico/metabolismo , Ligação Proteica , Eletricidade Estática , Proteínas da Matriz Viral/química
19.
Genes (Basel) ; 12(6)2021 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-34208492

RESUMO

Targeting DNA repair proteins with small-molecule inhibitors became a proven anti-cancer strategy. Previously, we identified an inhibitor of a major protein of homologous recombination (HR) RAD51, named B02. B02 inhibited HR in human cells and sensitized them to chemotherapeutic drugs in vitro and in vivo. Here, using a medicinal chemistry approach, we aimed to improve the potency of B02. We identified the B02 analog, B02-isomer, which inhibits HR in human cells with significantly higher efficiency. We also show that B02-iso sensitizes triple-negative breast cancer MDA-MB-231 cells to the PARP inhibitor (PARPi) olaparib.


Assuntos
Antineoplásicos/farmacologia , Inibidores Enzimáticos/farmacologia , Recombinação Homóloga/efeitos dos fármacos , Quinazolinonas/farmacologia , Rad51 Recombinase/antagonistas & inibidores , Antineoplásicos/química , Sítios de Ligação , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sinergismo Farmacológico , Inibidores Enzimáticos/química , Humanos , Simulação de Acoplamento Molecular , Ftalazinas/farmacologia , Piperazinas/farmacologia , Ligação Proteica , Quinazolinonas/química , Rad51 Recombinase/química , Rad51 Recombinase/metabolismo
20.
J Med Chem ; 64(7): 3747-3766, 2021 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-33750123

RESUMO

Poor metabolic stability of the human immunodeficiency virus type-1 (HIV-1) capsid (CA) inhibitor PF-74 is a major concern in its development toward clinical use. To improve on the metabolic stability, we employed a novel multistep computationally driven workflow, which facilitated the rapid design of improved PF-74 analogs in an efficient manner. Using this workflow, we designed three compounds that interact specifically with the CA interprotomer pocket, inhibit HIV-1 infection, and demonstrate enantiomeric preference. Moreover, using this workflow, we were able to increase the metabolic stability 204-fold in comparison to PF-74 in only three analog steps. These results demonstrate our ability to rapidly design CA compounds using a novel computational workflow that has improved metabolic stability over the parental compound. This workflow can be further applied to the redesign of PF-74 and other promising inhibitors with a stability shortfall.


Assuntos
Fármacos Anti-HIV/farmacologia , Proteínas do Capsídeo/antagonistas & inibidores , HIV-1/efeitos dos fármacos , Indóis/farmacologia , Sequência de Aminoácidos , Fármacos Anti-HIV/química , Fármacos Anti-HIV/metabolismo , Sítios de Ligação , Proteínas do Capsídeo/química , Proteínas do Capsídeo/metabolismo , Linhagem Celular Tumoral , Células HEK293 , Humanos , Indóis/química , Indóis/metabolismo , Testes de Sensibilidade Microbiana , Microssomos Hepáticos/metabolismo , Simulação de Acoplamento Molecular , Ligação Proteica , Estabilidade Proteica , Estereoisomerismo , Fluxo de Trabalho
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...