Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 86
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Rev ; 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39018111

RESUMO

Making a measurement over millions of nanoparticles or exposed crystal facets seldom reports on reactivity of a single nanoparticle or facet, which may depart drastically from ensemble measurements. Within the past 30 years, science has moved toward studying the reactivity of single atoms, molecules, and nanoparticles, one at a time. This shift has been fueled by the realization that everything changes at the nanoscale, especially important industrially relevant properties like those important to electrocatalysis. Studying single nanoscale entities, however, is not trivial and has required the development of new measurement tools. This review explores a tale of the clever use of old and new measurement tools to study electrocatalysis at the single entity level. We explore in detail the complex interrelationship between measurement method, electrocatalytic material, and reaction of interest (e.g., carbon dioxide reduction, oxygen reduction, hydrazine oxidation, etc.). We end with our perspective on the future of single entity electrocatalysis with a key focus on what types of measurements present the greatest opportunity for fundamental discovery.

2.
J Colloid Interface Sci ; 674: 474-481, 2024 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-38941939

RESUMO

HYPOTHESIS: This paper develops a new measurement method to answer the question: How does one measure the interfacial tension of adsorbed droplets? EXPERIMENTS: This measurement is based on the placement of a bubble at a water|organic interface. To prove the concept, a bubble was formed by pipetting gas below the water|1,2-dichloroethane interface. Our values agree well with previous reports. We then extended the measurement modality to a more difficult system: quantifying interfacial tension of 1,2-dichloroethane droplets adsorbed onto conductors. Carbon dioxide was generated in the aqueous phase from the electro-oxidation of oxalate. Given carbon dioxide's solubility in 1,2-dichloroethane, it partitions, a bubble nucleates, and the bubble can be seen by microscopy when driving the simultaneous oxidation of tris(bipyridine)ruthenium (II), a molecule that will interact with CO2.-. and provide light through electrochemiluminescence. We can quantify the interfacial tension of adsorbed droplets, a measurement very difficult performed with more usual techniques, by tracking the growth of the bubble and quantifying the bubble size at the time the bubble breaks through the aqueous|1,2-dichloroethane interface. FINDINGS: We found that the interfacial tension of nanoliter 1,2-dichloroethane droplets adsorbed to an electrified interface in water, which was previously immeasurable with current techniques, was one order of magnitude less than the bulk system.

3.
Anal Chem ; 96(26): 10648-10653, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38896456

RESUMO

Fentanyl is an extremely potent opioid that is commonly laced into other drugs. Fentanyl poses a danger to users but also to responders or bystanders who may unknowingly ingest a lethal dose (∼2 mg) of fentanyl from aerosolized powder or vapor. Electrochemistry offers a small, simple, and affordable platform for the direct detection of illicit substances; however, it is largely limited to solution-phase measurements. Here, we demonstrate the hands-free capture and electroanalyzation of aerosols containing fentanyl. A novel electrochemical cell is constructed by a microwire (cylindrical working electrode) traversing an ionic liquid film that is suspended within a conductive loop (reference/counter electrode). We provide a quantitative finite element simulation of the resulting electrochemical system. The suspended film maintains a high-surface area:volume, allowing the electrochemical cell to act as an effective aerosol collector. The low vapor pressure (negligible evaporation) of ionic liquid makes it a robust candidate for in-field applications, and the use of a hydrophobic ionic liquid allows for the extraction of fentanyl from solids and sprayed aqueous aerosols.


Assuntos
Aerossóis , Técnicas Eletroquímicas , Fentanila , Fentanila/análise , Aerossóis/química , Aerossóis/análise , Líquidos Iônicos/química , Eletrodos , Analgésicos Opioides/análise
4.
Analyst ; 149(15): 3939-3950, 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-38916245

RESUMO

Droplet evaporation and dissolution phenomena are pervasive in both natural and artificial systems, playing crucial roles in various applications. Understanding the intricate processes involved in the evaporation and dissolution of sessile droplets is of paramount importance for applications such as inkjet printing, surface coating, and nanoparticle deposition, etc. In this study, we present a demonstration of electrochemical investigation of the dissolution behaviour in sub-nL droplets down to sub-pL volume. Droplets on an electrode have been studied for decades in the field of electrochemistry to understand the phase transfer of ions at the oil-water interface, accelerated reaction rates in microdroplets, etc. However, the impact of microdroplet dissolution on the redox activity of confined molecules within the droplet has not been explored previously. As a proof-of-principle, we examine the dissolution kinetics of 1,2-dichloroethane droplets (DCE) spiked with 155 µM decamethylferrocene within an aqueous phase on an ultramicroelectrode (r = 6.3 µm). The aqueous phase serves as an infinite sink, enabling the dissolution of DCE droplets while also facilitating convenient electrical contact with the reference/counter electrode (Ag/AgCl 1 M KCl). Through comprehensive voltammetric analysis, we unravel the impact of droplet dissolution on electrochemical response as the droplet reaches minuscule volumes. We validate our experimental findings by finite element modelling, which shows deviations from the experimental results as the droplet accesses negligible volumes, suggesting the presence of complex dissolution modes.

5.
ACS Nanosci Au ; 4(3): 216-222, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38912286

RESUMO

Electrodeposition has been used for centuries to create new materials. However, synthetic platforms are still necessary to enrich a variety of nanomaterials that can be electrodeposited. For instance, IrO x is a popular material for the water oxidation reaction, but electrodeposition strategies for the controlled growth of IrO x nanoparticles are lacking. Here, we demonstrate the anodic electrodeposition of IrO x nanoparticles from aqueous nanodroplets. Field emission scanning electron microscopy (FESEM) and scanning transmission electron microscopy (STEM) images confirm the macro- and microstructure of the resulting nanoparticles. IrO x nanoparticles of 43 ± 10 nm in diameter were achieved. X-ray photoelectron spectroscopy (XPS) showed the presence of Ir(III) and Ir(IV) hydrated oxyhydroxide species. The synthesis of IrO x nanoparticles under anodic conditions using water nanodroplets expands the capabilities of our technique and provides a tunable platform for IrO x nanoparticle electrodeposition.

6.
Analyst ; 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38869006

RESUMO

The ability of analytical strategies to detect and positively identify molecules under extremely dilute conditions is important for the growth and expansion of analytical techniques and instrumentation. At present, few measurement science techniques can robustly approach the measurement of just a few thousand molecules. Here, we present an electrochemical platform for the detection and positive identification of fewer than 1000 molecules of decamethylferrocene ((Cp*)2FeII). We achieve this remarkable detection threshold by trapping (Cp*)2FeII in a 1,2-dichloroethane microdroplet, which is allowed to dissolve into an aqueous continuous phase while on a gold microelectrode (radius ∼6.25 µm). Because electrochemistry is not sensitive enough to observe the charge of less than 1000 molecules, we dissolved µM amounts hexacyanoferrate(III) in the aqueous continuous phase. The biphasic reaction between hexacyanoferrate(III) and Cp2*(Fe)II allows for a feedback loop when the microelectrode is biased sufficiently negative to reduce Cp2*(Fe)III. This feedback loop, a typical EC' catalytic mechanism, amplifies the electrochemical signal of Cp2*(Fe)II when the droplet is of small enough dimensions for feedback to occur. Our results demonstrate that clever biphasic reactions can be coupled with dissolving microdroplets to access extremely low limits of quantitation in electroanalysis.

7.
Annu Rev Anal Chem (Palo Alto Calif) ; 17(1): 149-171, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38594942

RESUMO

Analytical techniques operating at the nanoscale introduce confinement as a tool at our disposal. This review delves into the phenomenon of accelerated reactivity within micro- and nanodroplets. A decade of accelerated reactivity observations was succeeded by several years of fundamental studies aimed at mechanistic enlightenment. Herein, we provide a brief historical context for rate enhancement in and around micro- and nanodroplets and summarize the mechanisms that have been proposed to contribute to such extraordinary reactivity. We highlight recent electrochemical reports that make use of restricted mass transfer to enhance electrochemical reactions and/or quantitatively measure reaction rates within droplet-confined electrochemical cells. A comprehensive approach to nanodroplet reactivity is paramount to understanding how nature takes advantage of these systems to provide life on Earth and, in turn, how to harness the full potential of such systems.

8.
Analyst ; 149(7): 2180-2189, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38426542

RESUMO

New electrochemical probes offer the opportunity to investigate new systems. A dual barrel electrode can be laser pulled to produce micron-sized platinum disk electrodes. Here, we detail several important considerations for both the fabrication process and for experimental implimentation of the probe. We provide parameters for a Sutter P-2000 laser puller, methods for optical and electrochemical characterization, tips for how to successfully bevel the microelectrodes, and how salt concentrations and electrostatic discharge affect the voltammetry. This paper serves as a guide for how to successfully implement dual barrel electrodes from fabrication to experimentation.

9.
Proc Natl Acad Sci U S A ; 121(12): e2321064121, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38466847

RESUMO

Recent reports have detailed the striking observation that electroactive molecules, such as hydrogen peroxide (H2O2) and radical water species (H2O.+/H2O.-), are spontaneously produced in aqueous microdroplets. Stochastic electrochemistry allows one to study reactions in real-time occurring inside subfemtoliter droplets, one droplet at a time, when a microdroplet irreversibly adsorbs to an ultramicroelectrode surface (radius ~ 5 µm). Here, we use stochastic electrochemistry to probe the formation of hydrogen peroxide (H2O2) in single aqueous microdroplets suspended in 1,2-dichloroethane. The oxidation of H2O2 at alkaline pH (11.5) differs from near-neutral conditions (6.4), allowing us to create a digital, turn-off sensing modality for the presence of H2O2. Further, we show that the stochastic electrochemical signal is highest at the mass transfer limitation of the H2O2 couple and is dampened when the potential nears the formal potential. We validate these results by showing that the addition of a H2O2 selective probe, luminol, decreases the stochastic electrochemical response at alkaline pH (11.5). Our results support the observation that H2O2 is generated in water microdroplets at concentrations of ~100 s of µM.

10.
Anal Chem ; 96(14): 5384-5391, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38538561

RESUMO

Droplet evaporation has previously been used as a concentration enrichment strategy; however, the measurement technique of choice requires quantification in rather large volumes. Electrochemistry has recently emerged as a method to robustly probe volumes even down to the attoliter (10-18 L) level. We present a concentration enrichment strategy based on the dissolution of a microdroplet placed on the surface of a Au ultramicroelectrode (radius ∼ 6.25 µm). By precisely positioning a 1,2-dichloroethane microdroplet onto the ultramicroelectrode with a microinjector, we are able to track the droplet's behavior optically and electrochemically. Because the droplet spontaneously dissolves over time, given the relative solubility of 1,2-dichloroethane in the water continuous phase, the change in volume with time enriches the concentration of the redox probe (Cp2*(Fe)II) in the droplet. We demonstrate robust electrochemical detection down to sub-nM (800 pM) concentrations of Cp2*(Fe)II. For this droplet, 800 pM constitutes only about 106 molecules. We extend the strategy in a single-blind study to determine unknown concentrations, emphasizing the promise of the new methodology. These results take voltammetric quantification easily to the sub-µM regime.

11.
Small ; 20(28): e2308637, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38327152

RESUMO

Liquid aerosols are ubiquitous in nature, and several tools exist to quantify their physicochemical properties. As a measurement science technique, electrochemistry has not played a large role in aerosol analysis because electrochemistry in air is rather difficult. Here, a remarkably simple method is demonstrated to capture and electroanalyze single liquid aerosol particles with radii on the order of single micrometers. An electrochemical cell is constructed by a microwire (cylindrical working electrode) traversing a film of ionic liquid (1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide) that is suspended within a wire loop (reference/counter electrode). An ionic liquid is chosen because the low vapor pressure preserves the film over weeks, vastly improving suspended film electroanalysis. The resultant high surface area allows the suspended ionic liquid cell to act as an aerosol net. Given the hydrophobic nature of the ionic liquid, aqueous aerosol particles do not coalesce into the film. When the liquid aerosols collide with the sufficiently biased microwire (creating a complex boundary: aerosol|wire|ionic liquid|air), the electrochemistry within a single liquid aerosol particle can be interrogated in real-time. The ability to achieve liquid aerosol size distributions for aerosols over 1 µm in radius is demonstrated.

12.
J Colloid Interface Sci ; 661: 853-860, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38330657

RESUMO

Interfacial effects are well-known to significantly alter chemical reactivity, especially in confined environments, where the surface to volume ratio increases. Here, we observed an inhomogeneity in the electrogenerated chemiluminescence (ECL) intensity decrease over time in a multiphasic system composed of femtoliter water droplets entrapping femtoliter volumes of the 1,2-dichloroethane (DCE) continuous phase. In usual electrochemiluminescence (ECL) reactions involving an ECL chromophore and oxalate ([C2O4]2-), the build-up of CO2 diminishes the ECL signal with time because of bubble formation. We hypothesised that relative solubilities of chemical species in these environments play a dramatic role in interfacial reactivity. Water droplets, loaded with the ECL luminophore [Ru(bpy)3]2+ and the coreactant [C2O4]2- were allowed to stochastically collide and adsorb at the surface of a glassy carbon macroelectrode. When water droplets coalesce on the surface, they leave behind femtoliter droplets of the DCE phase (inclusions). We report the surprising finding that the addition of multiple interfaces, due to the presence of continuous phase's femtoliter inclusions, allows sustained ECL over time after successive potential applications at the triple-phase boundary between water droplet|electrode|DCE inclusion. When femtoliter droplets of DCE form on the electrode surface, bright rings of ECL are observed during the simultaneous oxidation of [Ru(bpy)3]2+ and [C2O4]2-. Control experiments and finite element modelling allowed us to propose that these rings arise because CO2 that is generated near the 1,2-dichloroethane droplet partitions in due to relative solubility of CO2 in 1,2-dichloroethane and builds up and/or is expelled at the top of the droplet. The small droplets of the DCE phase act as micropumps, pumping away carbon dioxide from the interface. These results highlight the unexpected point that confined microenvironments and their geometry can tune chemical reactions of industrial importance and fundamental interest.

13.
Proc Natl Acad Sci U S A ; 121(8): e2322425121, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38324605
14.
Anal Chem ; 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38316404

RESUMO

Chemical reactions that occur in droplets proceed much differently compared to bulk phases. For instance, many groups have studied droplets during levitation by mass spectrometry and fluorescence to gain more detailed mechanistic insight. Such droplets maximize the probability of solution species interacting with the solution-air interface, an interface that is inherently difficult to probe electrochemically. In this Technical Note, we overcome this limitation by developing a laser-pulled dual-barrel electrode. Having two microwires sealed within the same glass capillary allows one to make two-electrode measurements. We show that the electrode can be positioned within a levitating water droplet and that the voltammetry of a redox indicator (hexacyanoferrate (II/III)) can be observed in real-time. Such foundational measurement tools are important to probe a variety of chemical reactions at complex interfaces.

15.
Angew Chem Int Ed Engl ; 63(11): e202319010, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38168077

RESUMO

Despite the advantages of aqueous zinc (Zn) metal batteries (AZMB) like high specific capacity (820 mAh g-1 and 5,854 mAh cm-3 ), low redox potential (-0.76 V vs. the standard hydrogen electrode), low cost, water compatibility, and safety, the development of practically relevant batteries is plagued by several issues like unwanted hydrogen evolution reaction (HER), corrosion of Zn substrate (insulating ZnO, Zn(OH)2 , Zn(SO4 )x (OH)y , Zn(ClO4 )x (OH)y etc. passivation layer), and dendrite growth. Controlling and suppressing HER activity strongly correlates with the long-term cyclability of AZMBs. Therefore, a precise quantitative technique is needed to monitor the real-time dynamics of hydrogen evolution during Zn electrodeposition. In this study, we quantify hydrogen evolution using in situ electrochemical mass spectrometry (ECMS). This methodology enables us to determine a correction factor for the faradaic efficiency of this system with unmatched precision. For instance, during the electrodeposition of zinc on a copper substrate at a current density of 1.5 mA/cm2 for 600 seconds, 0.3 % of the total charge is attributed to HER, while the rest contributes to zinc electrodeposition. At first glance, this may seem like a small fraction, but it can be detrimental to the long-term cycling performance of AZMBs. Furthermore, our results provide insights into the correlation between HER and the porous morphology of the electrodeposited zinc, unravelling the presence of trapped H2 and Zn corrosion during the charging process. Overall, this study sets a platform to accurately determine the faradaic efficiency of Zn electrodeposition and provides a powerful tool for evaluating electrolyte additives, salts, and electrode modifications aimed at enhancing long-term stability and suppressing the HER in aqueous Zn batteries.

16.
J Am Chem Soc ; 146(1): 707-713, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38156610

RESUMO

Several groups have reported on the curious chemistry and reaction acceleration in confined volumes. These complex multiphase systems most closely resemble natural processes, and new measurement tools are necessary to probe chemistry in such environments. Generally, electrochemiluminescence (ECL) reports on processes immediately near (within a few micrometers) the electrode surface. Here, we introduce through-space ECL, reporting on dynamics of processes far away (100s of µm) from the electrode surface. We achieved this by collecting reflected ECL light. During the heterogeneous oxidation of C2O42- in an aqueous phase adjacent to a 1,2-dichlorethane droplet, CO2 accumulates in the 1,2-dichloroethane droplet. Upon buildup, we demonstrate that a CO2 bubble forms in the nonaqueous phase and is surprisingly trapped at the water|1,2-dichloroethane interface and continues to grow. The co-oxidation of tris(bipyridine)ruthenium(II) in the aqueous phase lights up the electrode surface and reflects off the edges of the bubble, revealing the bubble growth over time even when the bubble is fractions of a millimeter from the surface. We extend our results to quantifying bubble forces at the water-oil interface at remote distances from the electrode surface.

17.
Environ Sci Technol ; 57(51): 21815-21822, 2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38085788

RESUMO

Per- and polyfluoroalkyl substances (PFAS), nicknamed "forever chemicals" due to the strength of their carbon-fluorine bonds, are a class of potent micropollutants that cause deleterious health effects in mammals. The current state-of-the-art detection method requires the collection and transport of water samples to a centralized facility where chromatography and mass spectrometry are performed for the separation, identification, and quantification of PFAS. However, for efficient remediation efforts to be properly informed, a more rapid in-field testing method is required. We previously demonstrated the development and use of dioxygen as the mediator molecule. The use of dioxygen is predicated on the assumption that there will be consistent ambient dioxygen levels in natural waters. This is not always the case in hypoxic groundwater and at high altitudes. To overcome this challenge and further advance the strategies that will enable in-field electroanalysis of PFAS, we demonstrate, as a proof of concept, that dioxygen can be generated in solution through the hydrolysis of water. The electrogenerated dioxygen can then be used as a mediator molecule for the indirect detection of PFOS via molecularly imprinted polymer (MIP)-based electroanalysis. We demonstrate that calibration curves can be constructed with high precision and sensitivity (LOD < 1 ppt or 1 ng/L). Our results provide a foundation for enabling in-field hypoxic PFAS electroanalysis.


Assuntos
Fluorocarbonos , Poluentes Químicos da Água , Animais , Rios , Oxigênio/análise , Fluorocarbonos/análise , Poluentes Químicos da Água/análise , Água , Mamíferos
18.
Anal Chem ; 95(51): 18748-18753, 2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38082457

RESUMO

Diffusion is a fundamental process in various domains, such as pollution control, drug delivery, and isotope separation. Accurately measuring the diffusion coefficients (D) of one liquid into another often encounters challenges stemming from intermolecular interactions, precise observations at the liquid interface, convection, etc. Here, we present an innovative electrochemical methodology for determining the diffusion coefficient of a liquid into another liquid. The method involves precisely tracking the lifetime of a nonaqueous droplet. An organic droplet is placed on an ultramicroelectrode surrounded by an aqueous solution of potassium hexacyanoferrate(II/III). The droplet initially blocks the reduction or oxidation of the redox species. As the droplet dissolves, giving access to the conductive microelectrode surface, a continuously increasing current is observed in voltammetry and the amperometric i-t response. The electrochemical response thus directly reports on the flux of redox species on the electrode surface, allowing us to precisely determine the lifetime of the droplet. D values are directly determined through a combination of electrochemical analysis and the principles of droplet dissolution. We demonstrate the quantification of 1,2-dichloroethane and nitrobenzene into water, yielding diffusion coefficients of (11.3 ± 1.2) × 10-6 cm2/s and (5.2 ± 1.1) × 10-6 cm2/s, respectively. This work establishes a reliable electrochemical approach for quantifying diffusion coefficients based on droplet lifetime analysis.

19.
J Am Chem Soc ; 145(46): 25043-25055, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37934860

RESUMO

Most relevant systems of interest to modern chemists rarely consist of a single phase. Real-world problems that require a rigorous understanding of chemical reactivity in multiple phases include the development of wearable and implantable biosensors, efficient fuel cells, single cell metabolic characterization techniques, and solar energy conversion devices. Within all of these systems, confinement effects at the nanoscale influence the chemical reaction coordinate. Thus, a fundamental understanding of the nanoconfinement effects of chemistry in multiphase environments is paramount. Electrochemistry is inherently a multiphase measurement tool reporting on a charged species traversing a phase boundary. Over the past 50 years, electrochemistry has witnessed astounding growth. Subpicoampere current measurements are routine, as is the study of single molecules and nanoparticles. This Perspective focuses on three nanoelectrochemical techniques to study multiphase chemistry under nanoconfinement: stochastic collision electrochemistry, single nanodroplet electrochemistry, and nanopore electrochemistry.

20.
J Phys Chem Lett ; 14(36): 8151-8156, 2023 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-37669542

RESUMO

Multiphase chemical systems are greatly different than bulk solutions, as they provide a unique environment for reactions to proceed and have unique physicochemical properties. Thus, new tools need to be developed to gain a more detailed understanding of these systems. Here, we use electrogenerated chemiluminescence (ECL) to elucidate phase boundaries precisely and comprehensively between aqueous droplets and an organic continuous phase owing to ECL's unprecedented spatial resolution (a few micrometers) confined at the electrode surface. Phase-resolved mapping was accomplished by selecting a luminophore that is soluble in both phases while selecting two coreactants that are exclusively soluble in one phase or the other. This type of system allows us to map the complex liquid|electrode and the liquid|liquid interfaces in a multiphase system. We show that electrical connectivity is not conserved throughout solvent inclusions, which result from neighboring droplet coalescence, indicating an unexpected initial lack of electronic communication. These results have great importance to energy storage and conversion devices and wearable/implantable sensors, which are dominated by complex, multiphase environments.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA