Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Neurosci ; 16: 34, 2015 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-26077244

RESUMO

BACKGROUND: Inhibitory molecules in the adult central nervous system, including NogoA, impede neural repair by blocking axon outgrowth. The actin-myosin regulatory protein Shroom3 directly interacts with Rho kinase and conveys axon outgrowth inhibitory signals from Nogo66, a C-terminal inhibitory domain of NogoA. The purpose of this study was to identify small molecules that block the Shroom3-Rho kinase protein-protein interaction as a means to modulate NogoA signaling and, in the longer term, enhance axon outgrowth during neural repair. RESULTS: A high throughput screen for inhibitors of the Shroom3-Rho kinase protein-protein interaction identified CCG-17444 (Chem ID: 2816053). CCG-17444 inhibits the Shroom3-Rho kinase interaction in vitro with micromolar potency. This compound acts through an irreversible, covalent mechanism of action, targeting Shroom3 Cys1816 to inhibit the Shroom3-Rho kinase protein-protein interaction. Inhibition of the Shroom3-Rho kinase protein-protein interaction with CCG-17444 counteracts the inhibitory action of Nogo66 and enhances neurite outgrowth. CONCLUSIONS: This study identifies a small molecule inhibitor of the Shroom3-Rho kinase protein-protein interaction that circumvents the inhibitory action of Nogo66 in neurons. Identification of a small molecule compound that blocks the Shroom3-Rho kinase protein-protein interaction provides a first step towards a potential new strategy for enhancing neural repair.


Assuntos
Axônios/efeitos dos fármacos , Crescimento Celular/efeitos dos fármacos , Proteínas dos Microfilamentos/antagonistas & inibidores , Proteínas da Mielina/metabolismo , Pirimidinonas/farmacologia , Quinolonas/farmacologia , Quinases Associadas a rho/antagonistas & inibidores , Animais , Axônios/fisiologia , Linhagem Celular Tumoral , Células Cultivadas , Cerebelo/efeitos dos fármacos , Cerebelo/fisiologia , Relação Dose-Resposta a Droga , Escherichia coli , Ensaios de Triagem em Larga Escala , Camundongos , Proteínas dos Microfilamentos/metabolismo , Proteínas Nogo , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Proteínas Recombinantes/metabolismo , Quinases Associadas a rho/metabolismo
2.
J Neurosci ; 30(40): 13319-25, 2010 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-20926658

RESUMO

Myelin-derived inhibitors limit axon outgrowth and plasticity during development and in the adult mammalian CNS. Nogo66, a functional domain of the myelin-derived inhibitor NogoA, signals through the PirB receptor to inhibit axon outgrowth. The signaling pathway mobilized by Nogo66 engagement of PirB is not well understood. We identify a critical role for the scaffold protein Plenty of SH3s (POSH) in relaying process outgrowth inhibition downstream of Nogo66 and PirB. Blocking the function of POSH, or two POSH-associated proteins, leucine zipper kinase (LZK) and Shroom3, with RNAi in cortical neurons leads to release from myelin and Nogo66 inhibition. We also observed autocrine inhibition of process outgrowth by NogoA, and suppression analysis with the POSH-associated kinase LZK demonstrated that LZK operates downstream of NogoA and PirB in a POSH-dependent manner. In addition, cerebellar granule neurons with an RNAi-mediated knockdown in POSH function were refractory to the inhibitory action of Nogo66, indicating that a POSH-dependent mechanism operates to inhibit axon outgrowth in different types of CNS neurons. These studies delineate an intracellular signaling pathway for process outgrowth inhibition by Nogo66, comprised of NogoA, PirB, POSH, LZK, and Shroom3, and implicate the POSH complex as a potential therapeutic target to enhance axon outgrowth and plasticity in the injured CNS.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/fisiologia , Proteínas do Citoesqueleto/fisiologia , Cones de Crescimento/metabolismo , Líquido Intracelular/fisiologia , Proteínas da Mielina/metabolismo , Inibição Neural/fisiologia , Transdução de Sinais/fisiologia , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Animais Recém-Nascidos , Encéfalo/citologia , Encéfalo/crescimento & desenvolvimento , Encéfalo/metabolismo , Células Cultivadas , Proteínas do Citoesqueleto/genética , Cones de Crescimento/fisiologia , Inibidores do Crescimento/genética , Inibidores do Crescimento/fisiologia , Líquido Intracelular/metabolismo , MAP Quinase Quinase Quinases/fisiologia , Camundongos , Proteínas dos Microfilamentos/fisiologia , Proteínas da Mielina/genética , Proteínas da Mielina/fisiologia , Inibição Neural/genética , Plasticidade Neuronal/genética , Plasticidade Neuronal/fisiologia , Proteínas Nogo , Ratos , Receptores Imunológicos/fisiologia , Transdução de Sinais/genética , Frações Subcelulares/química , Frações Subcelulares/metabolismo , Frações Subcelulares/fisiologia
3.
Biochemistry ; 48(20): 4285-93, 2009 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-19338266

RESUMO

G protein-coupled receptor (GPCR) kinases (GRKs) were discovered by virtue of their ability to phosphorylate activated GPCRs. They constitute a branch of the AGC kinase superfamily, but their mechanism of activation is largely unknown. To initiate a study of GRK2 activation, we sought to identify sites on GRK2 remote from the active site that are involved in interactions with their substrate receptors. Using the atomic structure of GRK2 in complex with Gbetagamma as a guide, we predicted that residues on the surface of the kinase domain that face the cell membrane would interact with the intracellular loops and carboxyl-terminal tail of the GPCR. Our study focused on two regions: the kinase large lobe and an extension of the kinase domain known as the C-tail. Residues in the GRK2 large lobe whose side chains are solvent exposed and facing the membrane were targeted for mutagenesis. Residues in the C-tail of GRK2, although not ordered in the crystal structure, were also targeted because this region has been implicated in receptor binding and in the regulation of AGC kinase activity. Four substitutions out of 20, all within or adjacent to the C-tail, resulted in significant deficiencies in the ability of the enzyme to phosphorylate two different GPCRS: rhodopsin, and the beta(2)-adrenergic receptor. The mutant exhibiting the most dramatic impairment, V477D, also showed significant defects in phosphorylation of nonreceptor substrates. Interestingly, Michaelis-Menten kinetics suggested that V477D had a 12-fold lower k(cat), but no changes in K(M), suggesting a defect in acquisition or stabilization of the closed state of the kinase domain. V477D was also resistant to activation by agonist-treated beta(2)AR. Therefore, Val477 and other residues in the C-tail are expected to play a role in the activation of GRK2 by GPCRs.


Assuntos
Quinase 2 de Receptor Acoplado a Proteína G/metabolismo , Quinase 2 de Receptor Acoplado a Proteína G/fisiologia , Animais , Células COS , Membrana Celular/metabolismo , Chlorocebus aethiops , Cristalografia por Raios X/métodos , Humanos , Cinética , Modelos Moleculares , Conformação Molecular , Peptídeos/química , Fosforilação , Estrutura Terciária de Proteína , Receptores Adrenérgicos beta 2/metabolismo , Rodopsina/química
4.
Mol Biol Cell ; 19(12): 5181-92, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18829867

RESUMO

How scaffold proteins integrate signaling pathways with cytoskeletal components to drive axon outgrowth is not well understood. We report here that the multidomain scaffold protein Plenty of SH3s (POSH) regulates axon outgrowth. Reduction of POSH function by RNA interference (RNAi) enhances axon outgrowth in differentiating mouse primary cortical neurons and in neurons derived from mouse P19 cells, suggesting POSH negatively regulates axon outgrowth. Complementation analysis reveals a requirement for the third Src homology (SH) 3 domain of POSH, and we find that the actomyosin regulatory protein Shroom3 interacts with this domain of POSH. Inhibition of Shroom3 expression by RNAi leads to increased process lengths, as observed for POSH RNAi, suggesting that POSH and Shroom function together to inhibit process outgrowth. Complementation analysis and interference of protein function by dominant-negative approaches suggest that Shroom3 recruits Rho kinase to inhibit process outgrowth. Furthermore, inhibition of myosin II function reverses the POSH or Shroom3 RNAi phenotype, indicating a role for myosin II regulation as a target of the POSH-Shroom complex. Collectively, these results suggest that the molecular scaffold protein POSH assembles an inhibitory complex that links to the actin-myosin network to regulate neuronal process outgrowth.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Axônios/metabolismo , Proteínas do Citoesqueleto/metabolismo , Neurônios/fisiologia , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Axônios/ultraestrutura , Células Cultivadas , Córtex Cerebral/citologia , Proteínas do Citoesqueleto/genética , Teste de Complementação Genética , Humanos , Camundongos , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/metabolismo , Neurônios/citologia , Miosina não Muscular Tipo IIA/genética , Miosina não Muscular Tipo IIA/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Estrutura Terciária de Proteína , Interferência de RNA , Técnicas do Sistema de Duplo-Híbrido , Quinases Associadas a rho/antagonistas & inibidores , Quinases Associadas a rho/genética , Quinases Associadas a rho/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...