Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 132(13): 132501, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38613302

RESUMO

Neutron dark decays have been suggested as a solution to the discrepancy between bottle and beam experiments, providing a dark matter candidate that can be searched for in halo nuclei. The free neutron in the final state following the decay of ^{6}He into ^{4}He+n+χ provides an exceptionally clean detection signature when combined with a high efficiency neutron detector. Using a high-intensity ^{6}He^{+} beam at Grand Accélérateur National d'Ions Lourds, a search for a coincident neutron signal resulted in an upper limit on a dark decay branching ratio of Br_{χ}≤4.0×10^{-10} (95% C.L.). Using the dark neutron decay model proposed originally by Fornal and Grinstein, we translate this into an upper bound on a dark neutron branching ratio of O(10^{-5}), improving over global constraints by one to several orders of magnitude depending on m_{χ}.

2.
Phys Rev Lett ; 131(26): 262501, 2023 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-38215380

RESUMO

The excited states of unstable ^{20}O were investigated via γ-ray spectroscopy following the ^{19}O(d,p)^{20}O reaction at 8 AMeV. By exploiting the Doppler shift attenuation method, the lifetimes of the 2_{2}^{+} and 3_{1}^{+} states were firmly established. From the γ-ray branching and E2/M1 mixing ratios for transitions deexciting the 2_{2}^{+} and 3_{1}^{+} states, the B(E2) and B(M1) were determined. Various chiral effective field theory Hamiltonians, describing the nuclear properties beyond ground states, along with a standard USDB interaction, were compared with the experimentally obtained data. Such a comparison for a large set of γ-ray transition probabilities with the valence space in medium similarity renormalization group ab initio calculations was performed for the first time in a nucleus far from stability. It was shown that the ab initio approaches using chiral effective field theory forces are challenged by detailed high-precision spectroscopic properties of nuclei. The reduced transition probabilities were found to be a very constraining test of the performance of the ab initio models.

3.
Phys Rev Lett ; 126(13): 132502, 2021 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-33861122

RESUMO

Isotopic distributions of fragments from fission of the neutron-deficient ^{178}Hg nuclide are reported. This experimental observable is obtained for the first time in the region around lead using an innovative approach based on inverse kinematics and the coincidence between the large acceptance magnetic spectrometer VAMOS++ and a new detection arm close to the target. The average fragment N/Z ratio and prompt neutron M_{n} multiplicity are derived and compared with current knowledge from actinide fission. A striking consistency emerges, revealing the unexpected dominant role of the proton subsystem with atomic number between the Z=28 and 50 magic numbers. The origin of nuclear charge polarization in fission and fragment deformation at scission are discussed.

4.
Phys Rev Lett ; 121(19): 192502, 2018 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-30468583

RESUMO

Lifetime measurements of excited states of the light N=52 isotones ^{88}Kr, ^{86}Se, and ^{84}Ge have been performed, using the recoil distance Doppler shift method and VAMOS and AGATA spectrometers for particle identification and gamma spectroscopy, respectively. The reduced electric quadrupole transition probabilities B(E2;2^{+}→0^{+}) and B(E2;4^{+}→2^{+}) were obtained for the first time for the hard-to-reach ^{84}Ge. While the B(E2;2^{+}→0^{+}) values of ^{88}Kr, ^{86}Se saturate the maximum quadrupole collectivity offered by the natural valence (3s, 2d, 1g_{7/2}, 1h_{11/2}) space of an inert ^{78}Ni core, the value obtained for ^{84}Ge largely exceeds it, suggesting that shape coexistence phenomena, previously reported at N≲49, extend beyond N=50. The onset of collectivity at Z=32 is understood as due to a pseudo-SU(3) organization of the proton single-particle sequence reflecting a clear manifestation of pseudospin symmetry. It is realized that the latter provides actually reliable guidance for understanding the observed proton and neutron single particle structure in the whole medium-mass region, from Ni to Sn, pointing towards the important role of the isovector-vector ρ field in shell-structure evolution.

5.
Phys Rev Lett ; 118(16): 162501, 2017 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-28474951

RESUMO

Prompt γ-ray spectroscopy of the neutron-rich ^{96}Kr, produced in transfer- and fusion-induced fission reactions, has been performed using the combination of the Advanced Gamma Tracking Array and the VAMOS++ spectrometer. A second excited state, assigned to J^{π}=4^{+}, is observed for the first time, and a previously reported level energy of the first 2^{+} excited state is confirmed. The measured energy ratio R_{4/2}=E(4^{+})/E(2^{+})=2.12(1) indicates that this nucleus does not show a well-developed collectivity contrary to that seen in heavier N=60 isotones. This new measurement highlights an abrupt transition of the degree of collectivity as a function of the proton number at Z=36, of similar amplitude to that observed at N=60 at higher Z values. A possible reason for this abrupt transition could be related to the insufficient proton excitations in the g_{9/2}, d_{5/2}, and s_{1/2} orbitals to generate strong quadrupole correlations or to the coexistence of competing different shapes. An unexpected continuous decrease of R_{4/2} as a function of the neutron number up to N=60 is also evidenced. This measurement establishes the Kr isotopic chain as the low-Z boundary of the island of deformation for N=60 isotones. A comparison with available theoretical predictions using different beyond mean-field approaches shows that these models fail to reproduce the abrupt transitions at N=60 and Z=36.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...