Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biol Bull ; 229(3): 289-98, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26695828

RESUMO

Unlike lamellibranch bivalves, suspension-feeding calyptraeid gastropods lack siphons and paired shell valves to regulate water inflow. This study was designed to determine if calyptraeid gastropods use the solid surface to which they attach to facilitate food particle capture. Juveniles of both Crepidula fornicata and Crepipatella peruviana were maintained with phytoplankton for 3 to 6 wk in the laboratory, either attached to solid substrate or without solid substrate. Individuals of C. fornicata and C. peruviana that were reared on solid substrate grew about five to ten times more, or two times more, respectively, than those deprived of solid substrate. Final tissue weights were also significantly greater for individuals of both species that had been reared on solid substrate. For the two species, phytoplankton clearance rates were about two to three times higher for individuals attached to solid substrate than for those without solid substrate; rates of food cord production from the gills were also significantly higher. About 50% of C. peruviana that were deprived of solid substrate died during the first 3 wk of observation, and about 60% were dead by 6 wk. In contrast, most individuals of C. peruviana that were attached to solid substrate survived for the entire 6-wk study period, and all of the C. fornicata survived whether or not they were attached to solid substrate. The solid substrate to which calyptraeid gastropods attach clearly plays an important role in their feeding biology, although the precise role remains to be explored.


Assuntos
Gastrópodes/fisiologia , Animais , Ecossistema , Comportamento Alimentar , Gastrópodes/crescimento & desenvolvimento , Brânquias/fisiologia , Fitoplâncton , Movimentos da Água
2.
J Comp Physiol B ; 185(6): 659-68, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25966797

RESUMO

Organisms that encounter stressful situations in nature often cope using behavioral (e.g., avoidance) or physiological tactics. In sessile mollusks, the only available behavioral option in dealing with salinity stress is to "clam up", isolating their tissues from the environment. Though effective in the short term, prolonged isolation can have detrimental physiological consequences, particularly for females brooding embryos in a mantle cavity that is isolated from the external environment. In the Quempillén estuary, the Chilean oyster, Ostrea chilensis, spent nearly one-third of its brooding season at salinities low enough to cause female isolation. When females thus isolated themselves, the dissolved oxygen in their mantle cavity fluid dropped to hypoxic levels within 10 min. In females that were brooding embryos, this depletion of oxygen was not uniform: oxygen was depleted more quickly in the palp region (where embryos accumulate) than in the inhalant region. Additionally, oxygen was reduced even more quickly in the palp region when females were brooding late-stage embryos, which consumed oxygen significantly more quickly than embryos in earlier developmental stages. Finally, O. chilensis used anaerobic metabolism to cope with the hypoxia induced by isolation, as lactate accumulated in the tissues of both females (brooding > non-brooding) and embryos (late stage > early stage). Our findings demonstrate the trade-off between an adaptive avoidance behavior (clamming up) and the potentially detrimental consequences brought on by such a behavior (hypoxia). Cycling of embryos throughout the mantle cavity by deliberate female pumping keeps them from accumulating in the area between the palps, forestalling the creation of hypoxic conditions there. In addition, the capacity for anaerobic metabolism by both females and their embryos should help them tolerate the low oxygen levels that do eventually arise when the pallial cavity is isolated from the surrounding environment during long periods of reduced ambient salinity.


Assuntos
Ostrea/embriologia , Ostrea/fisiologia , Oxigênio/metabolismo , Reprodução/fisiologia , Estresse Fisiológico , Animais , Ecossistema , Embrião não Mamífero , Feminino , Lactatos/metabolismo , Ostrea/anatomia & histologia , Consumo de Oxigênio/fisiologia , Salinidade
3.
PLoS One ; 10(4): e0122859, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25874932

RESUMO

Brooding in invertebrates serves to protect embryos from stressful external conditions by retaining progeny inside the female body, effectively reducing the risk of pelagic stages being exposed to predation or other environmental stressors, but with accompanying changes in pallial fluid characteristics, including reduced oxygen availability. Brooded embryos are usually immobile and often encapsulated, but in some Ostrea species the embryos move freely inside the female pallial cavity in close association with the mother's gills for as long as eight weeks. We used endoscopic techniques to characterize the circulation pattern of embryos brooded by females of the oyster, Ostrea chilensis. Progeny at embryonic and veliger stages typically circulated in established patterns that included the use of dorsal and ventral food grooves (DFG, VFG) to move anteriorly on the gills. Both embryos and veligers accumulated around the mother's palps, and remained there until an active maternal countercurrent moved them to the gill inhalant area. Both food grooves were able to move embryos, veligers, and food-particle aggregates anteriorly, but the DFG was more important in progeny transport; early embryos were moved more rapidly than veligers in the DFG. A microcirculation pattern of embryos was apparent when they were moved by gill lamellae: when they were close to the VFG, most embryos lost gill contact and "fell" down to the DFG. Those that actually reached the DFG moved anteriorly, but others came into contact with the base of the lamellae and again moved towards the VFG. The circulation pattern of the progeny appears well-suited for both cleaning them and directing them posteriorly to an area where there is more oxygen and food than in the palp region. This process for actively circulating progeny involves the feeding structures (gill and palps) and appears to be energetically costly for the female. It also interferes with feeding, which could explain the poor energy balance previously documented for brooding females of this species.


Assuntos
Adaptação Fisiológica , Hipóxia/embriologia , Movimento/fisiologia , Ostrea/fisiologia , Animais , Chile , Embrião não Mamífero , Endoscopia , Feminino , Brânquias/anatomia & histologia , Brânquias/fisiologia , Larva/fisiologia , Ostrea/anatomia & histologia
4.
PLoS One ; 9(7): e103820, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25077484

RESUMO

Shallow-water coastal areas suffer frequent reductions in salinity due to heavy rains, potentially stressing the organisms found there, particularly the early stages of development (including pelagic larvae). Individual adults and newly hatched larvae of the gastropod Crepipatella peruviana were exposed to different levels of salinity stress (32(control), 25, 20 or 15), to quantify the immediate effects of exposure to low salinities on adult and larval behavior and on the physiological performance of the larvae. For adults we recorded the threshold salinity that initiates brood chamber isolation. For larvae, we measured the impact of reduced salinity on velar surface area, velum activity, swimming velocity, clearance rate (CR), oxygen consumption (OCR), and mortality (LC50); we also documented the impact of salinity discontinuities on the vertical distribution of veliger larvae in the water column. The results indicate that adults will completely isolate themselves from the external environment by clamping firmly against the substrate at salinities ≤24. Moreover, the newly hatched larvae showed increased mortality at lower salinities, while survivors showed decreased velum activity, decreased exposed velum surface area, and decreased mean swimming velocity. The clearance rates and oxygen consumption rates of stressed larvae were significantly lower than those of control individuals. Finally, salinity discontinuities affected the vertical distribution of larvae in the water column. Although adults can protect their embryos from low salinity stress until hatching, salinities <24 clearly affect survival, physiology and behavior in early larval life, which will substantially affect the fitness of the species under declining ambient salinities.


Assuntos
Gastrópodes/fisiologia , Estresse Fisiológico , Adaptação Fisiológica , Distribuição Animal , Animais , Larva/fisiologia , Salinidade , Água do Mar/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...