Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem A ; 115(32): 8779-82, 2011 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-21780796

RESUMO

Argon gas at a high pressure (∼80 bar) has been expanded using a miniaturized pulsed valve at room temperature, producing a supersonic beam of cold, large argon droplets. Atoms of silver are subsequently embedded into the droplet using the pick-up technique. The resulting Ag(n)Ar(droplet) distribution was analyzed using multiphoton laser ionization time-of-flight mass spectrometry. Besides bare metal clusters, snowballs of silver monomers and dimers encapsulated in up to 50 argon atoms have been observed. The influence of the solvent on the optical absorption of the solute was studied for embedded Ag(8) using resonant two-photon ionization in the ultraviolet. A redshift and broadening of the Ag(8)Ar(droplet) optical spectrum compared to that measured in pure [Federmann et al., Eur. Phys. J. D 1999, 9, 11] and Ar-doped helium droplets [Diederich et al., J. Chem. Phys.2002, 116, 3263] was observed, which is attributed to the interaction with the larger Ar matrix environment.

2.
Phys Rev Lett ; 103(9): 097201, 2009 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-19792822

RESUMO

We have studied the evolution of the magnetic state of a nanometer thick antiferromagnetic (AFM) FeO layer during its formation using nuclear resonant scattering of synchrotron radiation. In contact to ferromagnetic Fe, the FeO layer does not show magnetic order at room temperature (RT). Once embedded between two Fe layers, magnetic coupling to the adjacent ferromagnets leads to a drastic increase of the Néel temperature far above RT, while the blocking temperature remains below 30 K. The presented results evidence the role that the ferromagnetic surrounding plays in modifying the magnetic state of ultrathin AFM layers.

3.
Phys Chem Chem Phys ; 9(33): 4639-52, 2007 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-17700865

RESUMO

We review the strong field (10(13)-10(16) W cm(-2)) laser excitation of metal clusters (Cd(N), Ag(N) and Pb(N)) embedded in He nanodroplets. Plasmon enhanced ionization obtained by stretching the laser pulses to several hundreds of femtoseconds or by using dual pulses with a suitable optical delay leads to a Coulomb explosion of highly charged atomic ions. The charging dynamics can be well described by corresponding semiclassical Vlasov simulations. The influence of the He environment on the ionization process and on the final charge distribution is discussed. Evidence is found that He(2+) is generated in collisions with highly charged metal ions. In contrast, singly and doubly charged ions with low recoil energies induce the formation of He snowballs with a distinct shell structure around the ion. Laser intensity thresholds for snowball formation and for the ionization of clusters are investigated by applying intensity selective scanning.

4.
Phys Rev Lett ; 94(1): 013401, 2005 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-15698081

RESUMO

Silver clusters grown in helium nanodroplets are excited by intense femtosecond laser pulses resulting in the formation of a hot electron plasma far from equilibrium. The ultrafast dynamics is studied by applying optically delayed dual pulses, which allows us to pursue and control the coupling of the laser field to the clusters on a femtosecond time scale. A distinct influence of the optical delay on the ionization efficiency gives strong evidence that a significant contribution of collective dipolar electron motion is present, which is verified by corresponding Vlasov dynamics simulations on a model system. The microscopic approach demonstrates the outstanding role of giant resonances in clusters also in intense laser fields.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...