Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 19725, 2022 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-36385108

RESUMO

The rat hindlimb is a frequently utilized pre-clinical model system to evaluate injuries and pathologies impacting the hindlimbs. These studies have demonstrated the translational potential of this model but have typically focused on the force generating capacity of target muscles as the primary evaluative outcome. Historically, human studies investigating extremity injuries and pathologies have utilized biomechanical analysis to better understand the impact of injury and extent of recovery. In this study, we expand that full biomechanical workup to a rat model in order to characterize the spatiotemporal parameters, ground reaction forces, 3-D joint kinematics, 3-D joint kinetics, and energetics of gait in healthy rats. We report data on each of these metrics that meets or exceeds the standards set by the current literature and are the first to report on all these metrics in a single set of animals. The methodology and findings presented in this study have significant implications for the development and clinical application of the improved regenerative therapeutics and rehabilitative therapies required for durable and complete functional recovery from extremity traumas, as well as other musculoskeletal pathologies.


Assuntos
Roedores , Caminhada , Humanos , Ratos , Animais , Fenômenos Biomecânicos , Caminhada/fisiologia , Membro Posterior/fisiologia , Extremidade Inferior
2.
ACS Biomater Sci Eng ; 7(4): 1587-1599, 2021 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-33660968

RESUMO

Volumetric muscle loss (VML) injuries are characterized by a degree of tissue loss that exceeds the endogenous regenerative capacity of muscle, resulting in permanent structural and functional deficits. Such injuries are a consequence of trauma, as well as a host of congenital and acquired diseases and disorders. Despite significant preclinical research with diverse biomaterials, as well as early clinical studies with implantation of decellularized extracellular matrices, there are still significant barriers to more complete restoration of muscle form and function following repair of VML injuries. In fact, identification of novel biomaterials with more advantageous regenerative profiles is a critical limitation to the development of improved therapeutics. As a first step in this direction, we evaluated a novel semisynthetic hyaluronic acid-based (HyA) hydrogel that embodies material features more favorable for robust muscle regeneration. This HyA-based hydrogel is composed of an acrylate-modified HyA (AcHyA) macromer, an AcHyA macromer conjugated with the bsp-RGD(15) peptide sequence to enhance cell adhesion, a high-molecular-weight heparin to sequester growth factors, and a matrix metalloproteinase-cleavable cross-linker to allow for cell-dependent remodeling. In a well-established, clinically relevant rat tibialis anterior VML injury model, we report observations of robust functional recovery, accompanied by volume reconstitution, muscle regeneration, and native-like vascularization following implantation of the HyA-based hydrogel at the site of injury. These findings have important implications for the development and clinical application of the improved biomaterials that will be required for stable and complete functional recovery from diverse VML injuries.


Assuntos
Hidrogéis , Doenças Musculares , Animais , Ácido Hialurônico , Músculo Esquelético , Ratos , Regeneração
3.
Tissue Eng Part A ; 27(5-6): 297-310, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-30760135

RESUMO

Severe peripheral nerve injuries have devastating consequences on the quality of life in affected patients, and they represent a significant unmet medical need. Destruction of nerve fibers results in denervation of targeted muscles, which, subsequently, undergo progressive atrophy and loss of function. Timely restoration of neural innervation to muscle fibers is crucial to the preservation of muscle homeostasis and function. The goal of this study was to evaluate the impact of addition of adipose stem cells (ASCs) to polycaprolactone (PCL) nerve conduit guides on peripheral nerve repair and functional muscle recovery in the setting of a critical size nerve defect. To this end, peripheral nerve injury was created by surgically ablating 6 mm of the common peroneal nerve in a rat model. A PCL nerve guide, filled with ASCs and/or poloxamer hydrogel, was sutured to the nerve ends. Negative and positive controls included nerve ablation only (no repair), and reversed polarity autograft nerve implant, respectively. Tibialis anterior (TA) muscle function was assessed at 4, 8, and 12 weeks postinjury, and nerve and muscle tissue was retrieved at the 12-week terminal time point. Inclusion of ASCs in the PCL nerve guide elicited statistically significant time-dependent increases in functional recovery (contraction) after denervation; ∼25% higher than observed in acellular (poloxamer-filled) implants and indistinguishable from autograft implants, respectively, at 12 weeks postinjury (p < 0.05, n = 7-8 in each group). Analysis of single muscle fiber cross-sectional area (CSA) revealed that ASC-based treatment of nerve injury provided a better recapitulation of the overall distribution of muscle fiber CSAs observed in the contralateral TA muscle of uninjured limbs. In addition, the presence of ASCs was associated with improved features of re-innervation distal to the defect, with respect to neurofilament and S100 (Schwann cell marker) expression. In conclusion, these initial studies indicate significant benefits of inclusion of ASCs to the rate and magnitude of both peripheral nerve regeneration and functional recovery of muscle contraction, to levels equivalent to autograft implantation. These findings have important implications to improved nerve repair, and they provide input for future work directed to restoration of nerve and muscle function after polytraumatic injury. Impact Statement This works explores the application of adipose stem cells (ASCs) for peripheral nerve regeneration in a rat model. Herein, we demonstrate that the addition of ASCs in poloxamer-filled PCL nerve guide conduits impacts nerve regeneration and recovery of muscle function, to levels equivalent to autograft implantation, which is considered to be the current gold standard treatment. This study builds on the importance of a timely restoration of innervation to muscle fibers for preservation of muscle homeostasis, and it will provide input for future work aiming at restoring nerve and muscle function after polytraumatic injury.


Assuntos
Traumatismos dos Nervos Periféricos , Nervo Fibular , Animais , Humanos , Músculo Esquelético , Regeneração Nervosa , Qualidade de Vida , Ratos , Nervo Isquiático , Células-Tronco
4.
Artigo em Inglês | MEDLINE | ID: mdl-31275932

RESUMO

There is currently a substantial volume of research underway to develop more effective approaches for the regeneration of functional muscle tissue as treatment for volumetric muscle loss (VML) injury, but few studies have evaluated the relationship between injury and the biomechanics required for normal function. To address this knowledge gap, the goal of this study was to develop a novel method to quantify the changes in gait of rats with tibialis anterior (TA) VML injuries. This method should be sensitive enough to identify biomechanical and kinematic changes in response to injury as well as during recovery. Control rats and rats with surgically-created VML injuries were affixed with motion capture markers on the bony landmarks of the back and hindlimb and were recorded walking on a treadmill both prior to and post-surgery. Data collected from the motion capture system was exported for post-hoc analysis in OpenSim and Matlab. In vivo force testing indicated that the VML injury was associated with a significant deficit in force generation ability. Analysis of joint kinematics showed significant differences at all three post-surgical timepoints and gait cycle phase shifting, indicating augmented gait biomechanics in response to VML injury. In conclusion, this method identifies and quantifies key differences in the gait biomechanics and joint kinematics of rats with VML injuries and allows for analysis of the response to injury and recovery. The comprehensive nature of this method opens the door for future studies into dynamics and musculoskeletal control of injured gait that can inform the development of regenerative technologies focused on the functional metrics that are most relevant to recovery from VML injury.

5.
Tissue Eng Part A ; 25(17-18): 1272-1288, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-30882277

RESUMO

IMPACT STATEMENT: Despite medical advances, volumetric muscle loss (VML) injuries to craniofacial muscles represent an unmet clinical need. We report an implantable tissue-engineered construct that leads to substantial tissue regeneration and functional recovery in a preclinical model of VML injury that is dimensionally relevant to unilateral cleft lip repair, and a series of corresponding computational models that provide biomechanical insight into mechanism(s) responsible for the VML-induced functional deficits and recovery following tissue-engineered muscle repair implantation. This unique combined approach represents a critical first step toward establishing a crucial biomechanical basis for the development of efficacious regenerative technologies, considering the spectrum of VML injuries.


Assuntos
Engenharia Tecidual/métodos , Animais , Modelos Animais de Doenças , Masculino , Músculo Esquelético/citologia , Músculo Esquelético/metabolismo , Doenças Musculares/metabolismo , Ratos , Recuperação de Função Fisiológica , Cicatrização/fisiologia
6.
Bioeng Transl Med ; 2(2): 212-221, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-29313031

RESUMO

While many blood substitutes are based on mammalian hemoglobins (e.g., human hemoglobin, HbA), the naturally extracellular hemoglobins of invertebrates (a.k.a. erythrocruorins, Ecs) are intriguing alternative oxygen carriers. Specifically, the erythrocruorin of Lumbricus terrestris has been shown to effectively deliver oxygen in mice and rats without the negative side effects observed with HbA. In this study, the properties of six oligochaete Ecs (Lumbricus terrestris, Eisenia hortensis, Eisenia fetida, Eisenia veneta, Eudrilus eugeniae, and Amynthas gracilis) were compared in vitro to identify the most promising blood substitute candidate(s). Several metrics were used to compare the Ecs, including their oxidation rates, dissociation at physiological pH, thermal stability, and oxygen transport characteristics. Overall, the Ecs of Lumbricus terrestris (LtEc) and Eisenia fetida (EfEc) were identified as promising candidates, since they demonstrated high thermal and oligomeric stability, while also exhibiting relatively low oxidation rates. Interestingly, the O2 affinity of LtEc (P50 = 26.25 mmHg at 37 °C) was also observed to be uniquely lower than EfEc and all of the other Ecs (P50 = 9.29-13.62 mmHg). Subsequent alignment of the primary sequences of LtEc and EfEc revealed several significant amino acid substitutions within the D subunit interfaces that may be responsible for this significant change in O2 affinity. Nonetheless, these results show that LtEc and EfEc are promising potential blood substitutes that are resistant to oxidation and denaturation, but additional experiments will need to be conducted to determine their safety, efficacy, and the effects of their disparate oxygen affinities in vivo.

7.
Protein Expr Purif ; 125: 74-82, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-26363116

RESUMO

Although donated blood is the preferred material for transfusion, its limited availability and stringent storage requirements have motivated the development of blood substitutes. The giant extracellular hemoglobin (aka erythrocruorin) of the earthworm Lumbricus terrestris (LtEc) has shown promise as a blood substitute, but an efficient purification method for LtEc must be developed to meet the potential large demand for blood substitutes. In this work, an optimized purification process that uses divalent and trivalent metal salts to selectively precipitate human, earthworm, and bloodworm hemoglobin (HbA, LtEc, and GdHb, respectively) from crude solutions was developed. Although several metal ions were able to selectively precipitate LtEc, Zn(2+) and Ni(2+) provided the lowest heme oxidation and highest overall yield of LtEc. In contrast, Zn(2+) was the only metal ion that completely precipitated HbA and GdHb. Polyacrylamide gel electrophoresis (PAGE) analysis shows that metal precipitation removes several impurities to provide highly pure hemoglobin samples. Heme oxidation levels were relatively low for Zn(2+)-purified HbA and LtEc (2.4±1.3% and 5.3±2.1%, respectively), but slightly higher for Ni(2+)-purified LtEc (8.4±1.2%). The oxygen affinity and cooperativity of the precipitated samples are also identical to samples purified with tangential flow filtration (TFF) alone, indicating the metal precipitation does not significantly affect the function of the hemoglobins. Overall, these results show that hemoglobins from several different species can be highly purified using a combination of metal (Zn(2+)) precipitation and tangential flow filtration.


Assuntos
Precipitação Química , Hemoglobinas/química , Hemoglobinas/isolamento & purificação , Animais , Filtração , Humanos , Níquel , Oligoquetos , Oxirredução , Oxigênio , Poliquetos , Zinco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...