Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 144(45): 20947-20954, 2022 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-36324090

RESUMO

The widespread design of covalent drugs has focused on crafting reactive groups of proper electrophilicity and positioning toward targeted amino-acid nucleophiles. We found that environmental electric fields projected onto a reactive chemical bond, an overlooked design element, play essential roles in the covalent inhibition of TEM-1 ß-lactamase by avibactam. Using the vibrational Stark effect, the magnitudes of the electric fields that are exerted by TEM active sites onto avibactam's reactive C═O were measured and demonstrate an electrostatic gating effect that promotes bond formation yet relatively suppresses the reverse dissociation. These results suggest new principles of covalent drug design and off-target site prediction. Unlike shape and electrostatic complementary which address binding constants, electrostatic catalysis drives reaction rates, essential for covalent inhibition, and deepens our understanding of chemical reactivity, selectivity, and stability in complex systems.


Assuntos
Compostos Azabicíclicos , beta-Lactamases , Compostos Azabicíclicos/química , beta-Lactamases/metabolismo , Domínio Catalítico , Eletricidade Estática , Inibidores de beta-Lactamases/farmacologia
2.
J Am Chem Soc ; 144(17): 7531-7550, 2022 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-35389641

RESUMO

The chemistry of metal-organic and covalent organic frameworks (MOFs and COFs) is perhaps the most diverse and inclusive among the chemical sciences, and yet it can be radically expanded by blending it with nanotechnology. The result is reticular nanoscience, an area of reticular chemistry that has an immense potential in virtually any technological field. In this perspective, we explore the extension of such an interdisciplinary reach by surveying the explored and unexplored possibilities that framework nanoparticles can offer. We localize these unique nanosized reticular materials at the juncture between the molecular and the macroscopic worlds, and describe the resulting synthetic and analytical chemistry, which is fundamentally different from conventional frameworks. Such differences are mirrored in the properties that reticular nanoparticles exhibit, which we described while referring to the present state-of-the-art and future promising applications in medicine, catalysis, energy-related applications, and sensors. Finally, the bottom-up approach of reticular nanoscience, inspired by nature, is brought to its full extension by introducing the concept of augmented reticular chemistry. Its approach departs from a single-particle scale to reach higher mesoscopic and even macroscopic dimensions, where framework nanoparticles become building units themselves and the resulting supermaterials approach new levels of sophistication of structures and properties.


Assuntos
Estruturas Metalorgânicas , Nanotecnologia , Catálise , Estruturas Metalorgânicas/química
3.
Adv Mater ; 33(42): e2103808, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34499785

RESUMO

Building chemical structures of complexity and functionality approaching the level of biological systems is an ongoing challenge. A general synthetic strategy is proposed by which progressive levels of complexity are achieved through the building block approach whereby molecularly defined constructs at one level serve as constituent units of the next level, all being linked through strong bonds-"augmented reticular chemistry". Specifically, current knowledge of linking metal complexes and organic molecules into reticular frameworks is applied here to linking the crystals of these frameworks into supercrystals (superframeworks). This strategy allows for the molecular control exercised on the molecular regime to be translated into higher augmentation levels to produce systems capable of dynamics and complex functionality far exceeding current materials.


Assuntos
Estruturas Metalorgânicas/química , Dióxido de Carbono/química , Complexos de Coordenação/química , Elétrons , Luz , Oxirredução , Porosidade , Propriedades de Superfície
4.
Angew Chem Int Ed Engl ; 60(45): 23975-24001, 2021 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-33989445

RESUMO

The amalgamation of different disciplines is at the heart of reticular chemistry and has broadened the boundaries of chemistry by opening up an infinite space of chemical composition, structure, and material properties. Reticular design has enabled the precise prediction of crystalline framework structures, tunability of chemical composition, incorporation of various functionalities onto the framework backbone, and as a consequence, fine-tuning of metal-organic framework (MOF) and covalent organic framework (COF) properties beyond that of any other material class. Leveraging the unique properties of reticular materials has resulted in significant advances from both a fundamental and an applied perspective. Here, we wish to review the milestones in MOF and COF research and give a critical view on progress in their real-world applications. Finally, we briefly discuss the major challenges in the field that need to be addressed to pave the way for industrial applications.

5.
Angew Chem Int Ed Engl ; 60(45): 23946-23974, 2021 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-33783111

RESUMO

At its core, reticular chemistry has translated the precision and expertise of organic and inorganic synthesis to the solid state. While initial excitement over metal-organic frameworks (MOFs) and covalent organic frameworks (COFs) was undoubtedly fueled by their unprecedented porosity and surface areas, the most profound scientific innovation of the field has been the elaboration of design strategies for the synthesis of extended crystalline solids through strong directional bonds. In this contribution we highlight the different classes of reticular materials that have been developed, how these frameworks can be functionalized, and how complexity can be introduced into their backbones. Finally, we show how the structural control over these materials is being extended from the molecular scale to their crystal morphology and shape on the nanoscale, all the way to their shaping on the bulk scale.

6.
Chem ; 7(11): 2883-2895, 2021 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-37621702

RESUMO

The maturation of chemical synthesis during the 20th century has elevated the discipline from a largely empirical into a rational science. This ability to purposefully craft matter at the molecular level has put chemists in a privileged position to contribute to progress in neighboring natural sciences. Recently, we have witnessed another major advance in the field in which chemists use chemical and biological "synthetic" methods together to alter the structures and properties of biological macromolecules in ways heretofore unimagined. This interdisciplinary approach to synthesis has even allowed us to expand upon the defining characteristics of living organisms at the molecular level. In this perspective, we present a case study for the successful addition of new chemistries to the fundamental processes of the central dogma of molecular biology, exemplified by the expansion of the genetic code.

7.
Angew Chem Int Ed Engl ; 59(5): 2023-2027, 2020 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-31705565

RESUMO

Three new post-synthetic modification reactions, namely amidation, esterification, and thioesterification, were demonstrated on a novel highly crystalline two-dimensional covalent organic framework (COF), COF-616, bearing pre-installed carboxyl groups. The strategy can be used to introduce a large variety of functional groups into COFs and the modifications can be carried out under mild reaction conditions, with high yields, and an easy work-up protocol. As a proof of concept, various chelating functionalities were successfully incorporated into COF-616 to yield a family of adsorbents for efficient removal of several contaminants in the water.

8.
J Am Chem Soc ; 141(44): 17522-17526, 2019 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-31642665

RESUMO

A new three-dimensional metal-organic framework (MOF) was synthesized by linking ditopic amino functionalized polyoxometalate [N(C4H9)4]3[MnMo6O18{(OCH2)3CNH2}2] with 4-connected tetrahedral tetrakis(4-formylphenyl)methane building units through imine condensation. The structure of this MOF, termed MOF-688, was solved by single crystal X-ray diffraction and found to be triply interpenetrated diamond-based dia topology. Tetrabutylammonium cations fill the pores and balance the charge of the anionic framework. They can be exchanged with lithium ions to give high ionic conductivity (3.4 × 10-4 S cm-1 at 20 °C), a high lithium ion transference number (tLi+ = 0.87), and low interfacial resistance (353 Ω) against metallic lithium-properties that make it ideally suited as a solid-state electrolyte. Indeed, a prototype lithium metal battery constructed using MOF-688 as the solid electrolyte can be cycled at room temperature with a practical current density of ∼0.2 C.

9.
J Am Chem Soc ; 141(43): 17081-17085, 2019 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-31613614

RESUMO

The synthesis of a new anionic 3D metal-catecholate framework, termed MOF-1992, is achieved by linking tetratopic cobalt phthalocyanin-2,3,9,10,16,17,23,24-octaol linkers with Fe3(-C2O2-)6(OH2)2 trimers into an extended framework of roc topology. MOF-1992 exhibits sterically accessible Co active sites together with charge transfer properties. Cathodes based on MOF-1992 and carbon black (CB) display a high coverage of electroactive sites (270 nmol cm-2) and a high current density (-16.5 mA cm-2; overpotential, -0.52 V) for the CO2 to CO reduction reaction in water (faradaic efficiency, 80%). Over the 6 h experiment, MOF-1992/CB cathodes reach turnover numbers of 5800 with turnover frequencies of 0.20 s-1 per active site.

10.
J Am Chem Soc ; 141(17): 6848-6852, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-31017397

RESUMO

The first unsubstituted olefin-linked covalent organic framework, termed COF-701, was made by linking 2,4,6-trimethyl-1,3,5-triazine (TMT) and 4,4'-biphenyldicarbaldehyde (BPDA) through Aldol condensation. Formation of the unsubstituted olefin (-CH═CH-) linkage upon reticulation is confirmed by Fourier transform infrared (FT-IR) spectroscopy and solid-state 13C cross-polarization magic angle spinning (CP-MAS) NMR spectroscopy of the framework and of its 13C-isotope-labeled analogue. COF-701 is found to be porous (1715 m2 g-1) and to retain its composition and crystallinity under both strongly acidic and basic conditions. The high chemical robustness is attributed to the unsubstituted olefin linkages. Immobilization of the strong Lewis acid BF3·OEt2 in the pores of the structure yields BF3⊂COF-701. In the material, the catalytic activity of the guest is retained, as evidenced in a benchmark Diels-Alder reaction.

11.
Adv Mater ; 31(12): e1807553, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30687983

RESUMO

Nanocasting based on porous templates is a powerful strategy in accessing materials and structures that are difficult to form by bottom-up syntheses in a controlled fashion. A facile synthetic strategy for casting ordered, nanoporous platinum (NP-Pt) networks with a high degree of control by using metal-organic frameworks (MOFs) as templates is reported here. The Pt precursor is first infiltrated into zirconium-based MOFs and subsequently transformed to 3D metallic networks via a chemical reduction process. It is demonstrated that the dimensions and topologies of the cast NP-Pt networks can be accurately controlled by using different MOFs as templates. The Brunauer-Emmett-Teller surface areas of the NP-Pt networks are estimated to be >100 m2 g-1 and they exhibit excellent catalytic activities in the methanol electrooxidation reaction (MEOR). This new methodology presents an attractive route to prepare well-defined nanoporous materials for diverse applications ranging from energy to sensing and biotechnology.

12.
Adv Mater ; 31(3): e1805941, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30484915

RESUMO

The synthesis of a single-layer covalent organic framework (COF) with spatially modulated internal potentials provides new opportunities for manipulating the electronic structure of molecularly defined materials. Here, the fabrication and electronic characterization of COF-420: a single-layer porphyrin-based square-lattice COF containing a periodic array of oriented, type II electronic heterojunctions is reported. In contrast to previous donor-acceptor COFs, COF-420 is constructed from building blocks that yield identical cores upon reticulation, but that are bridged by electrically asymmetric linkers supporting oriented electronic dipoles. Scanning tunneling spectroscopy reveals staggered gap (type II) band alignment between adjacent molecular cores in COF-420, in agreement with first-principles calculations. Hirshfeld charge analysis indicates that dipole fields from oriented imine linkages within COF-420 are the main cause of the staggered electronic structure in this square grid of atomically-precise heterojunctions.

13.
J Am Chem Soc ; 141(1): 677-683, 2019 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-30532960

RESUMO

A new mode of mechanical entanglement in extended structures is described where 1D organic ribbons of corner-sharing squares are mutually interlocked to form 3D woven covalent organic framework-500, COF-500. Reaction of aldehyde-functionalized tetrahedral Cu(PDB)2PO2Ph2 complexes (PDB = 4,4'-(1,10-phenanthroline-2,9-diyl)dibenzaldehyde) with rectangular tetratopic ETTBA (4',4‴,4''''',4''''‴-(ethene-1,1,2,2-tetrayl)tetrakis([1,1'-biphenyl]-4-amine)) linkers through imine condensation, yielded a crystalline porous metalated COF, COF-500-Cu, with pts topology. Upon removal of the Cu(I) ions, the individual 1D square ribbons in the demetalated form (COF-500) are held together only by mechanical interlocking of rings, which allows their collective movement to produce a narrow-pore form, as evidenced by nitrogen adsorption and solid-state photoluminescence studies. When exposed to tetrahydrofuran vapor, the interlocking ribbons can dynamically move away from each other to reopen up the structure. The structural integrity of COF-500 is maintained during its dynamics because the constituent square ribbons cannot part company due to spatial confinement imparted by their interlocking nature.

14.
ACS Cent Sci ; 4(11): 1457-1464, 2018 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-30555897

RESUMO

Alfred Werner's work on the geometric aspects of how ligands bind to metal ions at the end of the 19th century has given rise, in the molecular realm, to organometallic, bioinorganic, and cluster chemistries. By stitching together organic and inorganic units into crystalline porous metal-organic frameworks (MOFs), the connectivity, spatial arrangement, and geometry of those molecular complexes can now be fixed in space and become directly addressable. The fact that MOFs are porous provides additional space within which molecules can further be transformed and their chemistry controlled. An aspect not available in molecular chemistry but a direct consequence of Werner's analysis of coordination complexes is the ability to have multivariable functionality in MOFs to bring about a continuum of chemical environments, within the repeating order of the framework, from which a substrate can sample and be transformed in ways not possible in molecular complex chemistry.

15.
J Am Chem Soc ; 140(48): 16438-16441, 2018 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-30431266

RESUMO

2D covalent organic frameworks (COFs) with flexible urea linkages have been synthesized by condensation of 1,3,5-triformylphloroglucinol (TFP) with 1,4-phenylenediurea (BDU) or 1,1'-(3,3'-dimethyl-[1,1'-biphenyl]-4,4'-diyl)diurea (DMBDU). The resulting COF-117 and COF-118 undergo reversible structural dynamics within their layers, in response to inclusion and removal of guest molecules, emanating from urea C-N bond rotation and interlayer hydrogen-bonding interactions. These compounds are the first urea-linked COFs, serving to expand the scope of reticular chemistry.

16.
J Am Chem Soc ; 140(47): 16015-16019, 2018 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-30272444

RESUMO

The synthesis of new isoreticular non-interpenetrated woven covalent organic frameworks (COFs) was achieved by linking aldehyde-functionalized copper(I) bisphenanthroline complexes with benzidine linkers in the presence of a bulky anion, diphenylphosphinate (PO2Ph2-) to give metalated COF-506-Cu and, upon removal of copper(I), the demetalated COF-506. The structures of these COFs were determined by a combination of powder X-ray diffraction and electron microscopy techniques. Guest-accessibility to the pores of the two frameworks was examined by vapor and dye inclusion studies and compared to the already reported doubly-interpenetrated COF-505-Cu.  Remarkably, COF-506 was found to take up guest molecules that exceed the size of the COF-506-Cu pores, thus giving credence to the notion of a novel mode of motional dynamics in solids we term 'adaptive inclusion'.

17.
Nat Mater ; 17(10): 943, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30087423

RESUMO

In the version of this Perspective originally published, the titles of the references were missing; the online versions have now been amended to include them.

18.
J Am Chem Soc ; 140(29): 9099-9103, 2018 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-29999317

RESUMO

Imine-linked ILCOF-1 based on 1,4-phenylenediamine and 1,3,6,8-tetrakis(4-formylphenyl)pyrene was converted through consecutive linker substitution and oxidative cyclization to two isostructural covalent organic frameworks (COFs), having thiazole and oxazole linkages. The completeness of the conversion was assessed by infrared and solid-state NMR spectroscopies, and the crystallinity of the COFs was confirmed by powder X-ray diffraction. Furthermore, the azole-linked COFs remain porous, as shown by nitrogen sorption experiments. The materials derived in this way demonstrate increased chemical stability, relative to the imine-linked starting material. This constitutes a facile method for accessing COFs and linkages that are otherwise difficult to crystallize due to their inherently limited microscopic reversibility.

19.
Adv Mater ; 30(37): e1704304, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29672950

RESUMO

Water harvesting from air in passive, adsorption-based devices holds great potential for delivering drinking water to arid regions of the world. This technology requires adsorbents that can be tailored for a maximum working capacity, temperature response, and the relative pressure range in which reversible adsorption occurs. In this respect, metal-organic frameworks (MOFs) are promising, owing to their structural diversity and the precision of their functionalization for adjusting both pore size and hydrophilicity, thereby facilitating the rational design of their water-sorption characteristics. Here, chemical and structural factors crucial for the design of hydrolytically stable MOFs for water adsorption are discussed. Prevalent water adsorption mechanisms in micro- and mesoporous MOFs alongside strategies for fine-tuning of their adsorption behavior by means of reticular chemistry are presented. Finally, an approach for the selection of promising MOFs with respect to water harvesting from air is proposed and design concepts for next-generation MOFs for application in passive adsorption-based water-harvesting devices are outlined.

20.
Nat Mater ; 17(4): 301-307, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29483634

RESUMO

The problem with current state-of-the-art catalysts for CO2 photo- or electroreduction is rooted in the notion that no single system can independently control, and thus optimize, the interplay between activity, selectivity and efficiency. At its core, reticular chemistry is recognized for its ability to control, with atomic precision, the chemical and structural features (activity and selectivity) as well as the output optoelectronic properties (efficiency) of porous, crystalline materials. The molecular building blocks that are in a reticular chemist's toolbox are chosen in such a way that the structures are rationally designed, framework chemistry is performed to integrate catalytically active components, and the manner in which these building blocks are connected endows the material with the desired optoelectronic properties. The fact that these aspects can be fine-tuned independently lends credence to the prospect of reticular chemistry contributing to the design of next-generation CO2 reduction catalysts.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...