Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 25(45): 31077-31089, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37946573

RESUMO

Small cationic cobalt, and cobalt-nickel alloy clusters with ethanol attached are generated in a pulsed molecular beam experiment using a laser ablation source. While the metal center is successively varied with respect to size and composition, a full-size study of these transition metal clusters is possible. The clusters are investigated via IR photodissociation spectroscopy in the region of OH- and CH-stretching vibrations. The results are compared with theoretical data obtained from DFT calculations. Both frequency shifts and structural changes according to cluster size and composition are identified and discussed in detail, also with respect to cooperative effects. Trimeric metal clusters with an uneven number of nickel atoms show evidence for C-O cleavage of the ethanol molecule. This result is elucidated by further calculations concerning the reactivity, charge and energetic distributions.

2.
Phys Chem Chem Phys ; 25(33): 22089-22102, 2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37610422

RESUMO

Vibrational spectroscopy in supersonic jet expansions is a powerful tool to assess molecular aggregates in close to ideal conditions for the benchmarking of quantum chemical approaches. The low temperatures achieved as well as the absence of environment effects allow for a direct comparison between computed and experimental spectra. This provides potential benchmarking data which can be revisited to hone different computational techniques, and it allows for the critical analysis of procedures under the setting of a blind challenge. In the latter case, the final result is unknown to modellers, providing an unbiased testing opportunity for quantum chemical models. In this work, we present the spectroscopic and computational results for the first HyDRA blind challenge. The latter deals with the prediction of water donor stretching vibrations in monohydrates of organic molecules. This edition features a test set of 10 systems. Experimental water donor OH vibrational wavenumbers for the vacuum-isolated monohydrates of formaldehyde, tetrahydrofuran, pyridine, tetrahydrothiophene, trifluoroethanol, methyl lactate, dimethylimidazolidinone, cyclooctanone, trifluoroacetophenone and 1-phenylcyclohexane-cis-1,2-diol are provided. The results of the challenge show promising predictive properties in both purely quantum mechanical approaches as well as regression and other machine learning strategies.

3.
Chemphyschem ; 24(13): e202300146, 2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-37010237

RESUMO

The structural identification of small nickel clusters with ethanol can help to understand fundamental steps for heterogenous catalysis. We investigate the rows [Nix (EtOH)1 ]+ with x=1-4, and [Ni2 (EtOH)y ]+ with y=1-3 via IR photodissociation spectroscopy in a molecular beam experiment. Analyzing the CH- and OH-stretching frequencies and comparing these experimental results with density functional theory (DFT) calculations on the PW91/6-311+G(d,p) level leads to the identification of intact motifs for all clusters and hints for C-O cleavage of the ethanol in two particular cases. Furthermore, we analyze the effects of frequency shifts with the increasing clusters sizes using the results of natural bond orbitals (NBO) analyses and an energy decomposition method.

4.
Sensors (Basel) ; 23(3)2023 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-36772452

RESUMO

Supply chains have evolved into dynamic, interconnected supply networks, which increases the complexity of achieving end-to-end traceability of object flows and their experienced events. With its capability of ensuring a secure, transparent, and immutable environment without relying on a trusted third party, the emerging blockchain technology shows strong potential to enable end-to-end traceability in such complex multitiered supply networks. This paper aims to overcome the limitations of existing blockchain-based traceability architectures regarding their object-related event mapping ability, which involves mapping the creation and deletion of objects, their aggregation and disaggregation, transformation, and transaction, in one holistic architecture. Therefore, this paper proposes a novel 'blueprint-based' token concept, which allows clients to group tokens into different types, where tokens of the same type are non-fungible. Furthermore, blueprints can include minting conditions, which, for example, are necessary when mapping assembly processes. In addition, the token concept contains logic for reflecting all conducted object-related events in an integrated token history. Finally, for validation purposes, this article implements the architecture's components in code and proves its applicability based on the Ethereum blockchain. As a result, the proposed blockchain-based traceability architecture covers all object-related supply chain events and proves its general-purpose end-to-end traceability capabilities of object flows.

5.
Phys Chem Chem Phys ; 24(25): 15208-15216, 2022 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-35579075

RESUMO

Chromone offers two energetically almost equivalent docking sites for alcohol molecules, in which the hydroxyl group is hydrogen bonded to one of the free electron pairs of the carbonyl O atom. Here, the delicate balance between these two competing arrangements is studied by combining IR/R2PI and UV/IR/UV spectroscopy in a molecular beam supported by quantum-chemical calculations. Most interestingly, chromone undergoes an efficient intersystem crossing into the triplet manifold upon electronic excitation, so that the studies on aromatic molecule-solvent complexes are for the first time extended to such a cluster in a triplet state. As the lowest triplet state (T1) is of ground state character, powerful energy decomposition approaches such as symmetry-adapted perturbation theory (SAPT) and local energy decomposition using the domain-based local pair natural orbital coupled-cluster method (DLPNO-CCSD(T)/LED) are applied. From the theoretical analysis we infer for the T1 state a loss of planarity (puckering) of the 4-pyrone ring of the chromone unit, which considerably affects the interplay between different types of non-covalent interactions at the two possible binding sites.


Assuntos
Cromonas , Metanol , Eletrônica , Elétrons , Estrutura Molecular
6.
Chempluschem ; 86(4): 622-628, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33851792

RESUMO

A concept for the quantification of cooperative effects in transition-metal complexes is presented. It is demonstrated for a series of novel N,N- (mononuclear) and C,N-coordinated homo- and heterometallic binuclear complexes based on the (2-dimethylamino)-4-(2-pyrimidinyl)pyrimidine ligand, which are accessible by applying roll-over cyclometallation. These iridium-, platinum-, and palladium-containing compounds are investigated with respect to their absorption and fluorescence spectra. The cooperative effects in the electronic absorptions, i. e., the energetic shifts between mononuclear and dinuclear complexes, and free ligands are analyzed on the basis of the lowest energy π-π* transitions and compared to calculated data, obtained from TD-DFT calculations. Furthermore the corresponding fluorescence spectra are presented and analyzed with respect to the concept of cooperativity.

7.
Phys Chem Chem Phys ; 22(25): 14187-14200, 2020 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-32609106

RESUMO

The primary photo-induced processes in the mononuclear, heteroleptic Cu(i) complex [(DPEPhos)Cu(PyrTet)] (1), relevant for OLED applications, were investigated in various solvents and in solid state samples via femtosecond (fs) time resolved UV/Vis and fs time resolved mid-IR transient absorption spectroscopy (TA) with MLCT excitation around 340 nm. UV/Vis fs-TA on 1 in solution reveals (i) a severe blue-shift of excited state absorption on the time scale of a few picoseconds (τ2) that is not observed in solids, and (ii), on the time scale of several tens of picoseconds (τ3), a process with very similar dynamics in all samples. Mid-IR fs-TA in solution indicates structural changes with τ2. Transient absorption anisotropy experiments temporally resolve a viscosity-dependent change of the excited state transition dipole moment orientation with τ2, as quantitatively predicted for the relaxed S1-state via TD-DFT. The results strongly suggest flattening distortion (FD) and structural rearrangement of the PyrTet-moiety to occur on the time scale of τ2 in liquid phase, and to be suppressed in solid phase. Moreover, intersystem crossing (ISC) is assigned to the process described by τ3, in line with its direct observation via time-resolved luminescence spectroscopy on 1 by Bergmann et al. (Sci. Adv., 2016, 2, e1500889). Overall, the use of structure-sensitive methods and the direct comparison of different preparations of 1 (i.e. solution vs. solid state), are a unique basis for a clear assignment of spectro-temporal characteristics to fundamental deactivation processes such as FD and ISC.

8.
Beilstein J Org Chem ; 14: 1642-1654, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30013690

RESUMO

The structure of the isolated aggregate of phenyl vinyl ether and methanol is studied by combining a multi-spectroscopic approach and quantum-chemical calculations in order to investigate the delicate interplay of noncovalent interactions. The complementary results of vibrational and rotational spectroscopy applied in molecular beam experiments reveal the preference of a hydrogen bond of the methanol towards the ether oxygen (OH∙∙∙O) over the π-docking motifs via the phenyl and vinyl moieties, with an additional less populated OH∙∙∙P(phenyl)-bound isomer detected only by microwave spectroscopy. The correct prediction of the energetic order of the isomers using quantum-chemical calculations turns out to be challenging and succeeds with a sophisticated local coupled cluster method. The latter also yields a quantification as well as a visualization of London dispersion, which prove to be valuable tools for understanding the role of dispersion on the docking preferences. Beyond the structural analysis of the electronic ground state (S0), the electronically excited (S1) state is analyzed, in which a destabilization of the OH∙∙∙O structure compared to the S0 state is observed experimentally and theoretically.

9.
Chem Commun (Camb) ; 54(41): 5221-5224, 2018 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-29725686

RESUMO

We have synthesized Eu(iii) ternary complexes possessing record photoluminescence yields up to 90%. This high luminescence performance resulted from the absence of quenching moieties in the Eu coordination environment and an efficient energy transfer between ligands, combined with a particular symmetry of the coordination environment.

10.
Angew Chem Int Ed Engl ; 57(30): 9534-9537, 2018 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-29710390

RESUMO

Dispersion interactions can play an important role in understanding unusual binding behaviors. This is illustrated by a systematic study of the structural preferences of diphenyl ether (DPE)-alcohol aggregates, for which OH⋅⋅⋅O-bound or OH⋅⋅⋅π-bound isomers can be formed. The investigation was performed through a multi-spectroscopic approach including IR/UV and microwave methods, combined with a detailed theoretical analysis. The resulting solvent-size-dependent trend for the structural preference turns out to be counter-intuitive: the hydrogen-bonded OH⋅⋅⋅O structures become more stable for larger alcohols, which are expected to be stronger dispersion energy donors and thus should prefer an OH⋅⋅⋅π arrangement. Dispersion interactions in combination with the twisting of the ether upon solvent aggregation are key for understanding this preference.

11.
Chemphyschem ; 18(24): 3634-3641, 2017 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-29024275

RESUMO

Diphenyl ether offers competing docking sites for methanol: the ether oxygen acts as a common hydrogen-bond acceptor and the π system of each phenyl ring allows for OH-π interactions driven by electrostatic, induction, and dispersion forces. Based on investigations in the electronic ground state (S0 ), we present a detailed study of the electronically excited state (S1 ) and the ionic ground state (D0 ), in which an impact on the structural preference is expected compared with the S0 state. Dispersion forces in the electronically excited state were analyzed by comparing the computed binding energies at the coupled-cluster-singles (CCS) and approximate coupled-cluster-singles-doubles levels of theory (CC2 approximation). By applying UV/IR/UV spectroscopy, we found a more strongly bound OH-π structure in the S1 state compared with the S0 state, in agreement with spin-component-scaled CC2 calculations. A structural rearrangement into a non-hydrogen-bonded structure takes places upon ionization in the D0 state, which was revealed by using IR photodissociation spectroscopy and confirmed by theory.

12.
Chemphyschem ; 18(21): 3023-3029, 2017 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-28815855

RESUMO

The structure in the ground and excited electronic state of two binuclear CuI N-heterocyclic phosphine complexes that are promising for implementation in organic light-emitting diodes is investigated by a combination of the time-resolved step-scan FTIR technique and quantum chemical calculations at the DFT level of theory. In contrast to the usual application of step-scan FTIR spectroscopy in solution, the herein-presented analyses are performed in a solid phase, that is, the CuI complexes are embedded in a KBr matrix (KBr pellet). The application of solid-state time-resolved step-scan FTIR spectroscopy is of great importance for transition metal complexes, since their photophysical properties often change on moving from solid to dissolved samples. The efficient applicability of the solid-state step-scan technique in a KBr matrix is demonstrated on the chosen CuI reference systems on nano- and microsecond timescales with an excitation wavelength of 355 nm. By comparison with theoretical results, the structure of the complexes in the electronic ground and lowest-lying electronically excited state can be determined.

13.
Phys Chem Chem Phys ; 19(27): 18076-18088, 2017 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-28675201

RESUMO

Aromatic ethers such as diphenyl ether (DPE) represent molecules with different docking sites for alcohols leading to competing OH-O and OH-π interactions. In a multi-spectroscopic approach in combination with quantum chemical calculations the complex of DPE with tert-butyl alcohol (t-BuOH) is investigated in the electronic ground state (S0) and the electronically excited state (S1). FTIR, microwave as well as mass- and isomer-selective IR/R2PI spectra are recorded, revealing co-existing OH-O and OH-π isomers in the S0 state. Surprisingly, they are predicted to be of almost equal stability in contrast to the previously investigated DPE-MeOH complex, where the OH-π structure is preferred by both theory and experiment. The tert-butyl group in t-BuOH allows for a simultaneous optimization of hydrogen-bonding and dispersion interactions, which provides a sensitive meeting point between theory and experiment. In the electronically excited state of DPE-t-BuOH, vibrational spectra could be recorded separately for both isomers using UV/IR/UV spectroscopy. In the S1 state the same structural binding motifs are obtained as in the S0 state with the OH-O bond being weakened for the OH-O arrangement and the OH-π interaction being strengthened in the case of the OH-π isomer compared to the S0 state.

14.
Phys Chem Chem Phys ; 18(37): 25975-25983, 2016 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-27722486

RESUMO

Dispersion interactions are omnipresent in intermolecular interactions, but their respective contributions are difficult to predict. Aromatic ethers offer competing docking sites for alcohols: the ether oxygen as a well known hydrogen bond acceptor, but also the aromatic π system. The interaction with two aromatic moieties in diphenyl ether can tip the balance towards π binding. We use a multi-spectroscopic approach to study the molecular recognition, the structure and internal dynamics of the diphenyl ether-methanol complex, employing infrared, infrared-ultraviolet and microwave spectroscopy. We find that the conformer with the hydroxy group of the alcohol binding to one aromatic π cloud and being coordinated by an aromatic C-H bond of the other phenyl group is preferred. Depending on the expansion conditions in the supersonic jet, we observe a second conformer, which exhibits a hydrogen bond to the ether oxygen and is higher in energy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...