Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
G3 (Bethesda) ; 7(8): 2729-2737, 2017 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-28620085

RESUMO

Spongy degeneration with cerebellar ataxia (SDCA) is a genetically heterogeneous neurodegenerative disorder with autosomal recessive inheritance in Malinois dogs, one of the four varieties of the Belgian Shepherd breed. Using a combined linkage and homozygosity mapping approach we identified an ∼10.6 Mb critical interval on chromosome 5 in a Malinois family with four puppies affected by cerebellar dysfunction. Visual inspection of the 10.6 Mb interval in whole-genome sequencing data from one affected puppy revealed a 227 bp SINE insertion into the ATP1B2 gene encoding the ß2 subunit of the Na+/K+-ATPase holoenzyme (ATP1B2:c.130_131insLT796559.1:g.50_276). The SINE insertion caused aberrant RNA splicing. Immunohistochemistry suggested a reduction of ATP1B2 protein expression in the central nervous system of affected puppies. Atp1b2 knockout mice had previously been reported to show clinical and neurohistopathological findings similar to the affected Malinois puppies. Therefore, we consider ATP1B2:c.130_131ins227 the most likely candidate causative variant for a second subtype of SDCA in Malinois dogs, which we propose to term spongy degeneration with cerebellar ataxia subtype 2 (SDCA2). Our study further elucidates the genetic and phenotypic complexity underlying cerebellar dysfunction in Malinois dogs and provides the basis for a genetic test to eradicate one specific neurodegenerative disease from the breeding population in Malinois and the other varieties of the Belgian Shepherd breed. ATP1B2 thus represents another candidate gene for human inherited cerebellar ataxias, and SDCA2-affected Malinois puppies may serve as a naturally occurring animal model for this disorder.


Assuntos
Proteínas de Transporte de Cátions/genética , Ataxia Cerebelar/genética , Ataxia Cerebelar/veterinária , Doenças do Cão/genética , Mutagênese Insercional/genética , Degeneração Neural/genética , Degeneração Neural/veterinária , Elementos Nucleotídeos Curtos e Dispersos/genética , Animais , Ataxia Cerebelar/patologia , Mapeamento Cromossômico , Cães , Éxons/genética , Feminino , Imuno-Histoquímica , Masculino , Degeneração Neural/patologia , Linhagem , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Análise de Sequência de DNA
2.
G3 (Bethesda) ; 7(2): 663-669, 2017 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-28007838

RESUMO

Spongy degeneration with cerebellar ataxia (SDCA) is a severe neurodegenerative disease with monogenic autosomal recessive inheritance in Malinois dogs, one of the four varieties of the Belgian Shepherd breed. We performed a genetic investigation in six families and seven isolated cases of Malinois dogs with signs of cerebellar dysfunction. Linkage analysis revealed an unexpected genetic heterogeneity within the studied cases. The affected dogs from four families and one isolated case shared a ∼1.4 Mb common homozygous haplotype segment on chromosome 38. Whole genome sequence analysis of three affected and 140 control dogs revealed a missense variant in the KCNJ10 gene encoding a potassium channel (c.986T>C; p.Leu329Pro). Pathogenic variants in KCNJ10 were reported previously in humans, mice, and dogs with neurological phenotypes. Therefore, we consider KCNJ10:c.986T>C the most likely candidate causative variant for one subtype of SDCA in Malinois dogs, which we propose to term spongy degeneration with cerebellar ataxia 1 (SDCA1). However, our study also comprised samples from 12 Malinois dogs with cerebellar dysfunction which were not homozygous for this variant, suggesting a different genetic basis in these dogs. A retrospective detailed clinical and histopathological analysis revealed subtle neuropathological differences with respect to SDCA1-affected dogs. Thus, our study highlights the genetic and phenotypic complexity underlying cerebellar dysfunction in Malinois dogs and provides the basis for a genetic test to eradicate one specific neurodegenerative disease from the breeding population. These dogs represent an animal model for the human EAST syndrome.


Assuntos
Doença de Canavan/genética , Ataxia Cerebelar/genética , Ligação Genética , Canais de Potássio Corretores do Fluxo de Internalização/genética , Animais , Cruzamento , Doença de Canavan/fisiopatologia , Doença de Canavan/veterinária , Ataxia Cerebelar/fisiopatologia , Ataxia Cerebelar/veterinária , Cães , Heterogeneidade Genética , Haplótipos , Humanos
3.
G3 (Bethesda) ; 6(9): 2963-70, 2016 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-27449517

RESUMO

We investigated a family of horses exhibiting irregular vertical stripes in their hair coat texture along the neck, back, hindquarters, and upper legs. This phenotype is termed "brindle" by horse breeders. We propose the term "brindle 1 (BR1)" for this specific form of brindle. In some BR1 horses, the stripes were also differentially pigmented. Pedigree analyses were suggestive of a monogenic X-chromosomal semidominant mode of inheritance. Haplotype analyses identified a 5 Mb candidate region on chromosome X. Whole genome sequencing of four BR1 and 60 nonbrindle horses identified 61 private variants in the critical interval, none of them located in an exon of an annotated gene. However, one of the private variants was close to an exon/intron boundary in intron 10 of the MBTPS2 gene encoding the membrane bound transcription factor peptidase, site 2 (c.1437+4T>C). Different coding variants in this gene lead to three related genodermatoses in human patients. We therefore analyzed MBTPS2 transcripts in skin, and identified an aberrant transcript in a BR1 horse, which lacked the entire exon 10 and parts of exon 11. The MBTPS2:c1437+4T>C variant showed perfect cosegregation with the brindle phenotype in the investigated family, and was absent from 457 control horses of diverse breeds. Altogether, our genetic data, and previous knowledge on MBTPS2 function in the skin, suggest that the identified MBTPS2 intronic variant leads to partial exon skipping, and causes the BR1 phenotype in horses.


Assuntos
Cabelo/metabolismo , Cavalos/genética , Metaloendopeptidases/genética , Splicing de RNA/genética , Animais , Éxons/genética , Cabelo/crescimento & desenvolvimento , Humanos , Íntrons/genética , Fenótipo , Dermatopatias/genética , Dermatopatias/patologia , Cromossomo X/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...