Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Gels ; 7(1)2020 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-33375239

RESUMO

Silica aerogels are known to be materials with exceptional characteristics, such as ultra-low density, high surface area, high porosity, high adsorption, and low-thermal conductivity. In addition, these unique properties are mainly related to their specific processing. Depending on the aerogel synthesis procedure, the aerogels texture can be tailored with meso and/or macroporosity. Fractal geometry has been observed and used to describe silica aerogels at nanoscales in certain conditions. In this review paper, we describe the fractal structure of silica aerogels that can develop depending on the synthesis conditions. X-ray and neutron scattering measurements allow to show that silica aerogels can exhibit a fractal structure over one or even more than two orders of magnitude in length. The fractal dimension does not depend directly on the material density but can vary with the synthesis conditions. It ranges typically between 1.6 and 2.4. The effect of the introduction of silica particles or of further thermal treatment or compression of the silica aerogels on their microstructure and their fractal characteristics is also resumed.

2.
Beilstein J Nanotechnol ; 10: 144-156, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30680287

RESUMO

Ordered mesoporous silica materials were prepared under different pH conditions by using a silicon alkoxide as a silica source and polyion complex (PIC) micelles as the structure-directing agents. PIC micelles were formed by complexation between a weak polyacid-containing double-hydrophilic block copolymer, poly(ethylene oxide)-b-poly(acrylic acid) (PEO-b-PAA), and a weak polybase, oligochitosan-type polyamine. As both the micellization process and the rate of silica condensation are highly dependent on pH, the properties of silica mesostructures can be modulated by changing the pH of the reaction medium. Varying the materials synthesis pH from 4.5 to 7.9 led to 2D-hexagonal, wormlike or lamellar mesostructures, with a varying degree of order. The chemical composition of the as-synthesized hybrid organic/inorganic materials was also found to vary with pH. The structure variations were discussed based on the extent of electrostatic complexing bonds between acrylate and amino functions and on the silica condensation rate as a function of pH.

3.
ACS Appl Mater Interfaces ; 9(37): 32018-32025, 2017 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-28845972

RESUMO

Periodic mesoporous ionosilica nanoparticles with ammonium walls were synthesized exclusively from a trisilylated ammonium precursor. The nanoparticles display a uniform particle size, together with a high specific surface area and an ordered hexagonal pore architecture. Completely biocompatible in vitro and in vivo, the nanoparticles are efficiently endocytosed by RAW 264.7 macrophages and used as carrier vehicles for anionic drugs. Diclofenac-loaded ionosilica nanoparticles are very efficient in inhibiting lipopolysaccharides-induced inflammation.


Assuntos
Nanopartículas , Compostos de Amônio , Sistemas de Liberação de Medicamentos , Porosidade , Dióxido de Silício
4.
Soft Matter ; 13(26): 4569-4579, 2017 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-28613327

RESUMO

Vegetable oil based hybrid films were developed thanks to a novel solvent- and heating-free method at the air-water interface using silylated castor oil cross-linked via a sol-gel reaction. To understand the mechanism of the hybrid film formation, the reaction kinetics was studied in detail by using complementary techniques: rheology, thermogravimetric analysis, and infrared spectroscopy. The mechanical properties of the final films were investigated using nano-indentation, whereas their structure was studied using a combination of wide-angle X-ray scattering, electron diffraction, and atomic force microscopy. We found that solid and transparent films form in 24 hours and, by changing the silica precursor to castor oil ratio, their mechanical properties are tunable in the MPa-range by about a factor of twenty. In addition to that, a possible optimization of the cross-linking reaction with different catalysts was explored, and finally cytotoxicity tests were performed on fibroblasts proving the absence of film toxicity. The results of this work pave the way to a straightforward synthesis of castor-oil films with tunable mechanical properties: hybrid films cross-linked at the air-water interface combine an easy and cheap spreading protocol with the features of their thermal history optimized for possible future micro/nano drug loading, thus representing excellent candidates for the replacement of non-environmentally friendly petroleum-based materials.

5.
Phys Chem Chem Phys ; 18(11): 7946-55, 2016 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-26958662

RESUMO

In this work, we develop the concept of evaporation-induced self-structuring as a novel approach for producing organised films by exploiting cooperative physical and chemical interactions under far-from-equilibrium conditions (spin-coating), using sol-gel precursors with multiple functional groups. Thin films of self-structured silsesquioxane nanohybrids have been deposited by spin coating through the sol-gel hydrolysis and condensation of a bridged organosilane bearing self-assembling urea groups. The resulting nanostructure, investigated by FTIR, AFM and SEM, is shown to be highly dependent on the catalyst used (nucleophilic or acidic), and can be further modulated by varying the spinning rate. FTIR studies revealed the presence of highly organised structures under acidic catalysis due to strong hydrogen bonding between urea groups and hydrophobic interactions between long alkylene chains. The preferential orientation of the urea cross-links parallel to the substrate is shown using polarized FTIR experiments.

6.
Adv Mater ; 27(1): 145-9, 2015 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-25378091

RESUMO

The design of hybrid multipodal PMO (mp-PMO) nanoparticles with crystal-like architectures elaborated in a one-pot, two-step process, involving the preparation of a benzene-based spherical PMO core followed by the formation of ethylene-based rod-shaped PMO pods on these cores is described.

7.
J Mater Chem B ; 2(20): 3133-3141, 2014 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-32261689

RESUMO

Poly(l-lactic acid) (PLLA) membranes containing pharmaceutically active ionic liquids (API-ILs) have been prepared by using a simple film casting from solvent evaporation method. Several sets of membranes were prepared from two different ionic liquids namely 1-methyl-3-butyl-imidazolium ibuprofenate (C4MImIbu) and lidocainium ibuprofenate (LidIbu) with different API-IL contents. Scanning Electron Microscopy (SEM), Differential Scanning Calorimetry (DSC), Wide-Angle and Small-Angle X-ray Scattering (WAXS and SAXS) revealed the strong influence of both the IL nature and content on the morphology and the crystallinity of the resulting PLLA. At 20 weight%, LidIbu was shown to act as a plasticizer for PLLA and homogeneous membranes were obtained. In contrast, at the same IL content, phase separation occurred using C4MImIbu, resulting in the formation of porous PLLA. An increase of LidIbu content to 50 weight% results also in phase separation. 1H and 1H-13C CP-MAS NMR measurements evidenced the influence of different morphologies and crystallinities on IL mobility. C4MImIbu was found to be highly mobile whereas the mobility of LidIbu was content dependent. At low percent, low mobility was observed while at higher content, two populations with respectively high and low mobility were observed. These PLLA-IL membranes were further tested as drug delivery systems. In accordance with the morphology and mobility obtained, we demonstrated that release kinetics from PLLA membranes can be tuned by the nature and the content of API-ILs. Sustainable release kinetics were obtained with API-IL acting as a plasticizer while the fastest release was obtained with API-IL acting as a porogenic agent.

8.
Chem Asian J ; 8(9): 2235-41, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23788409

RESUMO

The transformation by hydrolysis/condensation of four new mesityl-(bis or tris)imidazolium-based alkoxysilane precursors into their corresponding bridged silsesquioxanes has been investigated. These precursors feature urea groups and either short or long alkylene chains, which are known to favor self-assembly. The most regular nanostructures were obtained by a combination of the tripodal precursors with C10H20 alkylene chains, as shown by powder X-ray diffraction (PXRD) analysis, independent of the reaction conditions.

9.
Dalton Trans ; 42(8): 2822-30, 2013 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-23243664

RESUMO

Novel MoO(2)/C nano/microcomposites were prepared via a bottom-up approach by hydrothermal carbonization of a solution of glucose as a carbon precursor in the presence of polyoxometalates (POMs: phosphomolybdic acid [H(3)PMo(12)O(40)] and ammonium heptamolybdate tetrahydrate [(NH(4))(6)Mo(7)O(24)]·4H(2)O). The structural characterization by FT-IR, XRPD, SEM and TEM analyses revealed the controlled formation of hierarchical MoO(2)/C composites with different morphologies: strawberry-like, based on carbon microspheres decorated with MoO(2) nanoparticles; MoO(2)/C core-shell composites; and irregular aggregates in combination with ring-like microstructures bearing amorphous Mo species. These composites can be fine-tuned by varying reaction time, glucose/POM ratio and type of POM precursor. Subsequent transformations in the solid state through calcinations of MoO(2)/C core-shell composites in air lead to hollow nanostructured molybdenum trioxide microspheres together with nanorods and plate microcrystals or cauliflower-like composites (MoO(2)/C). In addition, the MoO(2)/C composite undergoes a morphology evolution to urchin-like composites when it is calcined under nitrogen atmosphere (MoO(2)/C-N(2)). The MoO(2)/C strawberry-like and MoO(2)/C-N(2) composites were transformed into Mo carbide and nitride supported on carbon microspheres (Mo(2)C/C, MoN/C, and MoN/C-N(2)). These phases were tested as precursors in thiophene hydrodesulphurization (HDS) at 400 °C, observing the following trend in relation to the thiophene steady-state conversion: MoN/C-N(2) > MoN/C > Mo(2)C/C > MoO(2)/C-N(2) > MoO(2)/C. According to these conversion values, a direct correlation was observed between higher HDS activity and decreasing crystal size as estimated from the Scherrer equation. These results suggest that such composites represent interesting and promising precursors for HDS catalysts, where the activity and stability can be modified either by chemical or structural changes of the composites under different conditions.


Assuntos
Carbono/química , Molibdênio/química , Nanocompostos/química , Óxidos/química , Sulfetos/química , Tiofenos/química , Tamanho da Partícula , Propriedades de Superfície
10.
Phys Chem Chem Phys ; 14(16): 5672-9, 2012 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-22422291

RESUMO

The crystalline structure of ureidopyrimidinone-based silane (UPY) has been determined. The local and long range order structuring of the bridged silsesquioxane (MUPY) resulting from the sol-gel hydrolysis-condensation of the former precursor has been investigated by MFTIR (Mid Fourier Transform InfraRed) combined with DFT (Density Functional Theory) and XRD (X-ray diffraction) studies. These studies showed that a long range structuring exists within the organic fragments with the transcription of the DDAA (Donor-Donor-Acceptor-Acceptor) H-bonding array from UPY to MUPY whereas a disordered siloxane network was revealed in the hybrid material.


Assuntos
Compostos de Organossilício/química , Cristalografia por Raios X , Géis/química , Hidrólise , Modelos Moleculares , Estrutura Molecular , Tamanho da Partícula , Teoria Quântica , Propriedades de Superfície , Vibração
11.
Phys Rev Lett ; 107(14): 148302, 2011 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-22107240

RESUMO

We study the nonlinear rheology of a novel class of transient networks, made of surfactant micelles of tunable morphology reversibly linked by block copolymers. We couple rheology and time-resolved structural measurements, using synchrotron radiation, to characterize the highly nonlinear viscoelastic regime. We propose the fluctuations of the degree of alignment of the micelles under shear as a probe to identify a fracture process. We show a clear signature of a brittle-to-ductile transition in transient gels, as the morphology of the micelles varies, and provide a parallel between the fracture of solids and the fracture under shear of viscoelastic fluids.

12.
J Colloid Interface Sci ; 356(2): 639-46, 2011 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-21300368

RESUMO

We report the synthesis of novel chiral catanionic liquid crystals bearing camphorsulfonamide substructures. The phase behaviour of these long-chain substituted imidazolium sulphates and sulfonates was investigated using X-ray diffraction (XRD), polarizing optical microscopy (POM) and differential scanning calorimetry (DSC). We observed that the phase behaviour clearly depends on the substitution of both cation and anion. The chiral camphorsulfonamide substructures have an unfavourable influence on the formation of liquid crystalline (LC-) phases. Contrary to N,N'-di-alkyl-imidazolium salts, the formation of LC phases was only observed when both cation and anion are substituted with long alkyl chains (C(12) or C(16)). Furthermore, the phase transition temperatures depend on the chain length of the alkyl groups, as higher phase transition temperatures were observed for compounds bearing longer alkyl chains. However, no macroscopic evidence for the formation of chiral mesophases was obtained.

13.
Dalton Trans ; 39(44): 10574-6, 2010 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-20922247

RESUMO

A series of gold- and silver-containing ionic liquids, [C(n)MIM][M(CN)(2)] (M = Au, Ag; n = 12, 14, 18), prepared by metathesis reactions, present luminescence depending on their physical state i.e. crystalline or smectic A phases. The photoluminescent measurements as well as DFT calculations suggest that the modulation of aurophilic intermolecular interactions are responsible for this phosphorescent behaviour.

14.
Chemistry ; 15(20): 5002-5, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19350601

RESUMO

The hydrolysis and condensation of a silylated derivative of ureidopyrimidinone led to nanostructured hybrid silica, such as that depicted, as clearly shown by powder XRD studies. The nanostructuring was directly related to molecular recognition through hydrogen bonding. By combining FTIR, solution and solid-state NMR spectroscopic data, the transcription of the hydrogen-bonding networks from the precursor to the final product was clearly evidenced.

15.
Small ; 5(4): 503-10, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19173348

RESUMO

A long-range ordered organic/inorganic material is synthesized from a bis-silane, (EtO)(3)Si-(CH(2))(3)-NHCONH-C(6)H(4)-NHCONH-(CH(2))(3)-Si(OEt)(3). This crosslinked sol-gel solid exhibits a supramolecular organization via intermolecular hydrogen bonding interactions between urea groups (-NHCONH-) and covalent siloxane bonding, triple bond Si-O-Si triple bond. Time-resolved in situ X-ray measurements (coupling small- and wide-angle X-ray scattering techniques) are performed to follow the different steps involved in the synthetic process. A new mechanism based on the crystallization of the hydrolyzed species followed by their polycondensation in solid state is proposed.


Assuntos
Siloxanas/química , Difração de Raios X/métodos , Modelos Moleculares , Espalhamento de Radiação
16.
Langmuir ; 25(2): 1138-47, 2009 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-19177655

RESUMO

Size controlled cyano-bridged coordination polymer nanoparticles Mn1.5[Cr(CN)6] have been synthesized and organized at the nanolevel by using the room temperature ionic liquid crystal (ILC) C12-MIMBF4. The as-obtained material was studied by transmission electron microscopy (TEM), differential scanning calorimetry (DSC), optical microscopy, and X-ray diffraction. These analyses reveal the presence of a long-range organization of cyano-bridged nanoparticles at the nanoscale level within the ILC phase. The magnetic study of these nanoparticles reveals an appearance of a nanocluster-glass-like regime caused by magnetostatic interactions between neighboring nanoparticles. The properties of these organized nanoparticles have been compared with the properties of nanoparticles of the same composition and stoichiometry obtained and randomly dispersed into the isotropic IL C10-MIMBF4.


Assuntos
Boratos/química , Cianetos/química , Imidazóis/química , Cristais Líquidos/química , Nanopartículas/química , Compostos Organometálicos/química , Polímeros/química , Cromo/química , Íons/química , Magnetismo , Manganês/química , Compostos Organometálicos/síntese química , Tamanho da Partícula , Propriedades de Superfície , Temperatura
17.
Langmuir ; 24(1): 259-65, 2008 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-18052223

RESUMO

The synthesis of novel ionic liquid crystals (ILCs) based on bis- and trisimidazolium salts (I-, BF4-, and [N(SO2CF3)2]-) bearing hydrophobic hexadecyl chains and a bridging mesitylene moiety is reported. The study of their mesomorphic properties is presented, including the characterization of the Smectic A phase by differential scanning calorimetry and polarized optical microscopy. A detailed powder X-ray diffraction (p-XRD) study as a function of temperature confirmed that cooling gives rise to a glass transition from the liquid-crystalline smectic A phase to a metastable lamellar phase. In addition, in the case of bisimidazolium iodide, the ability of these molecules to form self-aggregates in solution has been demonstrated by diffusion nuclear magnetic resonance (NMR) experiments.

18.
J Phys Chem B ; 110(32): 15797-802, 2006 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-16898728

RESUMO

Fourier transform infrared (FTIR) spectroscopy has been used to probe the organization of the organic fragments in lamellar bridged silsesquioxanes with organic substructures based on alkylene chains of various lengths and urea groups [O1.5Si(CH2)3NHCONH(CH2)nNHCONH(CH2)3SiO1.5] (n = 6, 8-12). The structure and intermolecular interactions (hydrophobic and H-bonding) of these well-defined self-structured hybrid silicas are discussed in relation to their powder X-ray diffraction patterns. The degree of structural order is determined by the length and parity of the alkylene spacer. A concomitant enhancement in the degree of condensation of the inorganic component and a decrease in the strength of the hydrophobic interactions between the organic components are demonstrated. The strength and directionality of the H-bonding are directly correlated to the crystalllinity of the organic-inorganic hybrid materials.


Assuntos
Compostos de Organossilício/química , Dióxido de Silício/química , Ligação de Hidrogênio , Modelos Moleculares , Estrutura Molecular , Sensibilidade e Especificidade , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Difração de Raios X
19.
Langmuir ; 21(10): 4362-9, 2005 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-16032848

RESUMO

We report the preparation of direct hexagonal liquid crystals, constituted of oil-swollen cylinders arranged on a triangular lattice in water. The volume ratio of oil over water, rho can be as large as 3.8. From the lattice parameter measured by small-angle X-ray scattering, we show that all the oil is indeed incorporated into the cylinders, thus allowing the diameter of the cylinders to be controlled over one decade range, provided that the ionic strength of the aqueous medium and rho are varied concomitantly. These hexagonal swollen liquid crystals (SLCs) have been first reported with sodium dodecyl sulfate as anionic surfactant, cyclohexane as solvent, 1-pentanol as co-surfactant, and sodium chloride as salt (Ramos, L.; Fabre, P. Langmuir 1997, 13, 13). The stability of these liquid crystals is investigated when the pH of the aqueous medium or the chemical nature of the components (salt and surfactant) is changed. We demonstrate that the range of stability is quite extended, rendering swollen hexagonal phases potentially useful for the fabrication of nanomaterials. As illustrations, we finally show that gelation of inorganic particles in the continuous aqueous medium of a SLC and polymerization within the oil-swollen cylinders of a SLC can be conducted without disrupting the hexagonal order of the system.

20.
J Colloid Interface Sci ; 284(1): 289-97, 2005 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-15752816

RESUMO

Due to complete proton transfer from the acid to the amine, a reaction between an equimolar mixture of dodecylamine and (meth)acrylic acid leads to the formation of dodecylammonium (meth)acrylate. The latter can be considered as a surfactant with a polymerizable organic counterion. The ternary phase diagrams of the two systems dodecylamine/acrylic acid/water and dodecylamine/methacrylic acid/water are described. Both systems can form isotropic solutions and lyotropic liquid crystalline lamellar phases. Moreover, the system with the methacrylate counterion can also form a cubic phase in the water-rich part of the phase diagram. The difference in the self-organization observed for the two systems is explained by the greater bulkiness and hydrophobicity of the methacrylate. Whereas the acrylate counterion behaves rather like a classic inorganic counterion, the methacrylate counterion resides in the outermost part of the aggregates, giving rise to a change in the surface curvature.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...