Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Chem Mater ; 35(15): 6168-6177, 2023 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-37576587

RESUMO

In spite of widespread interest in the unique size-dependent properties and consequent applications of gold nanoparticles (AuNPs), synthetic protocols that reliably allow for independent tuning of surface chemistry and core size, the two critical determinants of AuNP properties, remain limited. Often, core size is inherently affected by the ligand structure in an unpredictable fashion. Functionalized ligands are commonly introduced using postsynthesis exchange procedures, which can be inefficient and operationally delicate. Here, we report a one-step protocol for preparing monolayer-stabilized AuNPs that is compatible with a wide range of ligand functional groups and also allows for the systematic control of core size. In a single-phase reaction using the mild reducing agent tert-butylamine borane, AuNPs that are compatible with solvents spanning a wide range of polarities from toluene to water can be produced without damaging reactive chemical functionalities within the small-molecule surface-stabilizing ligands. We demonstrate that the rate of reduction, which is easily controlled by adjusting the period over which the reducing agent is added, is a simple parameter that can be used irrespective of the ligand structure to adjust the core size of AuNPs without broadening the size distribution. Core sizes in the range of 2-10 nm can thus be generated. The upper size limit appears to be determined by the nature of each specific ligand/solvent pairing. This protocol produces high quality, functionally sophisticated nanoparticles in a single step. By combining the ability to vary size-related nanoparticle properties with the option to incorporate reactive functional groups at the nanoparticle-solvent interface, it is possible to generate chemically reactive colloidal building blocks from which more complex nanoparticle-based devices and materials may subsequently be constructed.

2.
Chemistry ; 27(38): 9948-9953, 2021 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-33871124

RESUMO

Emerging nanotechnologies demand the manipulation of nanoscale components with the same predictability and programmability as is taken for granted in molecular synthetic methodologies. Yet installing appropriately reactive chemical functionality on nanomaterial surfaces has previously entailed compromises in terms of reactivity scope, functionalization density, or both. Here, we introduce an idealized dynamic covalent nanoparticle building block for divergent and adaptive post-synthesis modification of colloidal nanomaterials. Acetal-protected monolayer-stabilized gold nanoparticles are prepared via operationally simple protocols and are stable to long-term storage. Tunable surface densities of reactive aldehyde functionalities are revealed on-demand, leading to a wide range of adaptive surface engineering options from one nanoscale synthon. Analytically tractable with molecular precision, interfacial reaction kinetics and dynamic surface constitutions can be probed in situ at the ensemble level. High functionalization densities combined with rapid equilibration kinetics enable environmentally adaptive surface constitutions and rapid nanoparticle property switching in response to simple chemical effectors.


Assuntos
Nanopartículas Metálicas , Nanoestruturas , Ouro , Nanotecnologia , Propriedades de Superfície
3.
Chem Soc Rev ; 50(2): 1269-1304, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33290474

RESUMO

Noble metal nanoparticles (NPs) are ideal scaffolds for the fabrication of sensing devices because of their high surface-to-volume ratio combined with their unique optical and electrical properties which are extremely sensitive to changes in the environment. Such characteristics guarantee high sensitivity in sensing processes. Metal NPs can be decorated with ad hoc molecular building blocks which can act as receptors of specific analytes. By pursuing this strategy, and by taking full advantage of the specificity of supramolecular recognition events, highly selective sensing devices can be fabricated. Besides, noble metal NPs can also be a pivotal element for the fabrication of chemical nose/tongue sensors to target complex mixtures of analytes. This review highlights the most enlightening strategies developed during the last decade, towards the fabrication of chemical sensors with either optical or electrical readout combining high sensitivity and selectivity, along with fast response and full reversibility, with special attention to approaches that enable efficient environmental and health monitoring.

4.
Front Chem ; 7: 469, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31334218

RESUMO

In this paper, the unusual reactivity of the complex Zn(II)-1,4,7-trimethyl-1, 4,7-triazacyclononane (2) in the transesterification of the RNA-model substrate, HPNP (3), is reported. The dependence of the reactivity (k2) with pH does not follow the characteristic bell-shape profile typical of complexes with penta-coordinated metal centers. By the contrary, two reactive species, featuring different deprotonation states, are present, with the tri-aqua complex being more reactive than the mono-hydroxy-diaqua one. Apparently, such a difference arises from the total complex charge which plays an important role in the stability of the transition state/s of the reactions. Relevant insight on the reaction mechanism were hence obtained.

5.
Chem Rec ; 18(7-8): 819-828, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29251809

RESUMO

Monolayer protected gold nanoparticles (AuNPs) have a huge potential for the development of innovative sensing systems for the detection of metal ions and small molecules. The organic ligand shell, primarily utilized to stabilize the gold core, can be rationally designed to promote selective interactions with a desired analyte. In addition, the outstanding physical and optical properties of AuNPs can be exploited to obtain analytically useful signals upon analyte binding. In this account, we review recent advances in AuNP-based sensing systems emphasizing on the rational design of the ligand shell for detection of heavy metal ions and small molecules. We examine various strategies of detection by evaluating their improvements in terms of sensitivity, selectivity and applicability to real samples.

6.
Chemistry ; 22(47): 16957-16963, 2016 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-27723145

RESUMO

A simple and effective method for high-sensitivity NMR detection of selected compounds is reported. The method combines 1D NMR diffusion filter experiments and small monolayer-protected nanoparticles as high-affinity receptors. Once bound to the nanoparticles, the diffusion coefficient of the analyte decreases in such way that spectral editing based on diffusion filters can separate its signals from those of other mixture components. Using nanoparticles functionalized with Zn2+ -triazacyclonane complexes, detection and identification of phosphorylated organic molecules can be achieved. Diphenyl phosphate can be detected at 25 micromolar concentration with good selectivity. The selectivity toward organic carboxylates is enhanced at pD=3.75. In these conditions, commercial tablets containing betamethasone phosphate and a large excess of benzoate could be successfully analyzed.

7.
J Am Chem Soc ; 137(2): 886-92, 2015 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-25534150

RESUMO

Monolayer-protected nanoparticles provide a straightforward access to self-organized receptors that selectively bind different substrates in water. Molecules featuring different kinds of noncovalent interactions (namely, hydrophobic, ion pairing, and metal-ligand coordination) can be grafted on the nanoparticle surface to provide tailored binding sites for virtually any class of substrate. Not only the selectivity but also the strength of these interactions can be modulated. Such recognition ability can be exploited with new sensing protocols, based on NMR magnetization transfer and diffusion-ordered spectroscopy (DOSY), to detect and identify organic molecules in complex mixtures.

8.
J Am Chem Soc ; 136(4): 1158-61, 2014 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-24405094

RESUMO

The self-organization of Zn(II) complexes on the surface of 1.6-nm diameter gold nanoparticles (nanozymes) allows the spontaneous formation of multiple bimetallic catalytic sites capable to promote the cleavage of a RNA model substrate. We show that by tuning the structure of the nanoparticle-coating monolayer, it is possible to decrease the polarity of the reaction site, and this in turn generates remarkable increments of the cleavage efficiency.


Assuntos
Compostos Organometálicos/química , Organofosfatos/química , Zinco/química , Catálise , Ouro/química , Nanopartículas Metálicas/química , Estrutura Molecular , Compostos Organometálicos/síntese química , Tamanho da Partícula , Propriedades de Superfície , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA