Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Med Phys ; 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38597815

RESUMO

BACKGROUND: Cyclotron-based proton therapy systems utilize the highest proton energies to achieve an ultra-high dose rate (UHDR) for FLASH radiotherapy. The deep-penetrating range associated with this high energy can be modulated by inserting a uniform plate of proton-stopping material, known as a range shifter, in the beam path at the nozzle to bring the Bragg peak within the target while ensuring high proton transport efficiency for UHDR. Aluminum has been recently proposed as a range shifter material mainly due to its high compactness and its mechanical properties. A possible drawback lies in the fact that aluminum has a larger cross-section of producing secondary neutrons compared to conventional plastic range shifters. Accordingly, an increase in secondary neutron contamination was expected during the delivery of range-modulated FLASH proton therapy, potentially heightening neutron-induced carcinogenic risks to the patient. PURPOSE: We conducted neutron dosimetry using simulations and measurements to evaluate excess dose due to neutron exposure during UHDR proton irradiation with aluminum range shifters compared to plastic range shifters. METHODS: Monte Carlo simulations in TOPAS were performed to investigate the secondary neutron production characteristics with aluminum range shifter during 225 MeV single-spot proton irradiation. The computational results were validated against measurements with a pair of ionization chambers in an out-of-field region ( ≤ $\le$ 30 cm) and with a Proton Recoil Scintillator-Los Alamos rem meter in a far-out-of-field region (0.5-2.5 m). The assessments were repeated with solid water slabs as a surrogate for the conventional range shifter material to evaluate the impact of aluminum on neutron yield. The results were compared with the International Electrotechnical Commission (IEC) standards to evaluate the clinical acceptance of the secondary neutron yield. RESULTS: For a range modulation up to 26 cm in water, the maximum simulated and measured values of out-of-field secondary neutron dose equivalent per therapeutic dose with aluminum range shifter were found to be ( 0.57 ± 0.02 ) mSv/Gy $(0.57\pm 0.02)\ \text{mSv/Gy}$ and ( 0.46 ± 0.04 ) mSv/Gy $(0.46\pm 0.04)\ \text{mSv/Gy}$ , respectively, overall higher than the solid water cases (simulation: ( 0.332 ± 0.003 ) mSv/Gy $(0.332\pm 0.003)\ \text{mSv/Gy}$ ; measurement: ( 0.33 ± 0.03 ) mSv/Gy $(0.33\pm 0.03)\ \text{mSv/Gy}$ ). The maximum far out-of-field secondary neutron dose equivalent was found to be ( 8.8 ± 0.5 $8.8 \pm 0.5$ )  µ Sv / Gy $\umu {\rm Sv/Gy}$ and ( 1.62 ± 0.02 $1.62 \pm 0.02$ )  µ Sv / Gy $\umu {\rm Sv/Gy}$ for the simulations and rem meter measurements, respectively, also higher than the solid water counterparts (simulation: ( 3.3 ± 0.3 $3.3 \pm 0.3$ )  µ Sv / Gy $\umu {\rm Sv/Gy}$ ; measurement: ( 0.63 ± 0.03 $0.63 \pm 0.03$ )  µ Sv / Gy $\umu {\rm Sv/Gy}$ ). CONCLUSIONS: We conducted simulations and measurements of secondary neutron production under proton irradiation at FLASH energy with range shifters. We found that the secondary neutron yield increased when using aluminum range shifters compared to conventional materials while remaining well below the non-primary radiation limit constrained by the IEC regulations.

2.
Mol Cancer Ther ; 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38593239

RESUMO

Head and neck cancer radiotherapy often damages salivary glands and oral mucosa, severely negatively impacting patients' quality of life. The ability of FLASH- Proton Radiation therapy (F-PRT) to decrease normal tissue toxicity while maintaining tumor control compared to Standard Proton Radiation therapy (S-PRT) has been previously demonstrated for several tissues. However, its potential in ameliorating radiation-induced salivary gland dysfunction and oral mucositis and controlling orthotopic head and neck tumor growth has not been reported. The head and neck area of C57BL/6 mice was irradiated with a single dose of RT (ranging from 14-18 Gy) or a fractionated dose of 8 Gy x 3 of F-PRT (128 Gy/s) or S-PRT (0.95 Gy/s). Following irradiation, the mice were studied for radiation-induced xerostomia by measuring their salivary flow. Oral mucositis was analyzed by histopathological examination. To determine the ability of F-PRT to control orthotopic head and neck tumors, tongue tumors were generated in the mice and then irradiated with either F-PRT or S-PRT. Mice treated with either a single dose or fractionated dose of F-PRT showed significantly improved survival than those irradiated with S-PRT. F-PRT-treated mice showed improvement in their salivary flow. S-PRT-irradiated mice demonstrated increased fibrosis in their tongue epithelium. F-PRT significantly increased the overall survival of the mice with orthotopic tumors compared to the S-PRT-treated mice. The demonstration that F-PRT decreases radiation-induced normal tissue toxicity without compromising tumor control, suggests that this modality could be useful for the clinical management of head and neck cancer patients.

3.
Semin Radiat Oncol ; 34(2): 218-228, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38508786

RESUMO

FLASH is an emerging treatment paradigm in radiotherapy (RT) that utilizes ultra-high dose rates (UHDR; >40 Gy)/s) of radiation delivery. Developing advances in technology support the delivery of UHDR using electron and proton systems, as well as some ion beam units (eg, carbon ions), while methods to achieve UHDR with photons are under investigation. The major advantage of FLASH RT is its ability to increase the therapeutic index for RT by shifting the dose response curve for normal tissue toxicity to higher doses. Numerous preclinical studies have been conducted to date on FLASH RT for murine sarcomas, alongside the investigation of its effects on relevant normal tissues of skin, muscle, and bone. The tumor control achieved by FLASH RT of sarcoma models is indistinguishable from that attained by treatment with standard RT to the same total dose. FLASH's high dose rates are able to mitigate the severity or incidence of RT side effects on normal tissues as evaluated by endpoints ranging from functional sparing to histological damage. Large animal studies and clinical trials of canine patients show evidence of skin sparing by FLASH vs. standard RT, but also caution against delivery of high single doses with FLASH that exceed those safely applied with standard RT. Also, a human clinical trial has shown that FLASH RT can be delivered safely to bone metastasis. Thus, data to date support continued investigations of clinical translation of FLASH RT for the treatment of patients with sarcoma. Toward this purpose, hypofractionated irradiation schemes are being investigated for FLASH effects on sarcoma and relevant normal tissues.


Assuntos
Lesões por Radiação , Radioterapia (Especialidade) , Sarcoma , Humanos , Animais , Cães , Camundongos , Sarcoma/radioterapia , Fótons/uso terapêutico , Hipofracionamento da Dose de Radiação , Dosagem Radioterapêutica
4.
Artigo em Inglês | MEDLINE | ID: mdl-38364948

RESUMO

PURPOSE: Studies during the past 9 years suggest that delivering radiation at dose rates exceeding 40 Gy/s, known as "FLASH" radiation therapy, enhances the therapeutic index of radiation therapy (RT) by decreasing normal tissue damage while maintaining tumor response compared with conventional (or standard) RT. This study demonstrates the cardioprotective benefits of FLASH proton RT (F-PRT) compared with standard (conventional) proton RT (S-PRT), as evidenced by reduced acute and chronic cardiac toxicities. METHODS AND MATERIALS: Mice were imaged using cone beam computed tomography to precisely determine the heart's apex as the beam isocenter. Irradiation was conducted using a shoot-through technique with a 5-mm diameter circular collimator. Bulk RNA-sequencing was performed on nonirradiated samples, as well as apexes treated with F-PRT or S-PRT, at 2 weeks after a single 40 Gy dose. Inflammatory responses were assessed through multiplex cytokine/chemokine microbead assay and immunofluorescence analyses. Levels of perivascular fibrosis were quantified using Masson's Trichrome and Picrosirius red staining. Additionally, cardiac tissue functionality was evaluated by 2-dimensional echocardiograms at 8- and 30-weeks post-PRT. RESULTS: Radiation damage was specifically localized to the heart's apex. RNA profiling of cardiac tissues treated with PRT revealed that S-PRT uniquely upregulated pathways associated with DNA damage response, induction of tumor necrosis factor superfamily, and inflammatory response, and F-PRT primarily affected cytoplasmic translation, mitochondrion organization, and adenosine triphosphate synthesis. Notably, F-PRT led to a milder inflammatory response, accompanied by significantly attenuated changes in transforming growth factor ß1 and α smooth muscle actin levels. Critically, F-PRT decreased collagen deposition and better preserved cardiac functionality compared with S-PRT. CONCLUSIONS: This study demonstrated that F-PRT reduces the induction of an inflammatory environment with lower expression of inflammatory cytokines and profibrotic factors. Importantly, the results indicate that F-PRT better preserves cardiac functionality, as confirmed by echocardiography analysis, while also mitigating the development of long-term fibrosis.

5.
Heart Rhythm ; 21(1): 18-24, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37827346

RESUMO

BACKGROUND: Cardiac stereotactic body radiotherapy (SBRT) has emerged as a promising noninvasive treatment for refractory ventricular tachycardia (VT). OBJECTIVE: The purpose of this study was to describe the safety and effectiveness of SBRT for VT in refractory to extensive ablation. METHODS: After maximal medical and ablation therapy, patients were enrolled in a prospective registry. Available electrophysiological and imaging data were integrated to generate a plan target volume. All SBRTs were planned with a single 25 Gy fraction using respiratory motion mitigation strategies. Clinical outcomes at 6 weeks, 6 months, and 12 months were analyzed and compared with the 6 months prior to treatment. VT burden (implantable cardioverter-defibrillator [ICD] shocks and antitachycardia pacing sequences) as well as clinical and safety outcomes were the main outcomes. RESULTS: Fifteen patients were enrolled and underwent planning. Fourteen (93%) underwent treatment, with 12 (80%) surviving to the end of the 6-week period and 10 (67%) surviving to 12 months. From 6 week to 12 months, there was recurrence of VT, which resulted in either appropriate antitachycardia pacing or ICD shocks in 33% (4 of 12). There were significant reductions in treated VT at 6 weeks to 6 months (98%) and at 12 months (99%) compared to the 6 months before treatment. There was a nonsignificant trend toward lower amiodarone dose at 12 months. Four deaths occurred after treatment, with no changes in ventricular function. CONCLUSION: For a select group of high-risk patients with VT refractory to standard therapy, SBRT is associated with a reduction in VT and appropriate ICD therapies over 1 year.


Assuntos
Amiodarona , Desfibriladores Implantáveis , Radiocirurgia , Taquicardia Ventricular , Humanos , Radiocirurgia/métodos , Resultado do Tratamento
6.
Cell Rep Med ; 4(10): 101241, 2023 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-37852175

RESUMO

Allogeneic invariant natural killer T cells (allo-iNKTs) induce clinical remission in patients with otherwise incurable cancers and COVID-19-related acute respiratory failure. However, their functionality is inconsistent among individuals, and they become rapidly undetectable after infusion, raising concerns over rejection and limited therapeutic potential. We validate a strategy to promote allo-iNKT persistence in dogs, an established large-animal model for novel cellular therapies. We identify donor-specific iNKT biomarkers of survival and sustained functionality, conserved in dogs and humans and retained upon chimeric antigen receptor engineering. We reason that infusing optimal allo-iNKTs enriched in these biomarkers will prolong their persistence without requiring MHC ablation, high-intensity chemotherapy, or cytokine supplementation. Optimal allo-iNKTs transferred into MHC-mismatched dogs remain detectable for at least 78 days, exhibiting sustained immunomodulatory effects. Our canine model will accelerate biomarker discovery of optimal allo-iNKT products, furthering application of MHC-unedited allo-iNKTs as a readily accessible universal platform to treat incurable conditions worldwide.


Assuntos
COVID-19 , Transplante de Células-Tronco Hematopoéticas , Células T Matadoras Naturais , Humanos , Cães , Animais , Transplante Homólogo , Biomarcadores
7.
Phys Med Biol ; 68(14)2023 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-37352867

RESUMO

Objective. A physicochemical model built on the radiochemical kinetic theory was recently proposed in (Labarbeet al2020) to explain the FLASH effect. We performed extensive simulations to scrutinize its applicability for oxygen depletion studies and FLASH-related experiments involving both proton and electron beams.Approach. Using the dose and beam delivery parameters for each FLASH experiment, we numerically solved the radiochemical rate equations comprised of a set of coupled nonlinear ordinary differential equations to obtain the area under the curve (AUC) of radical concentrations.Main results. The modeled differences in AUC induced by ultra-high dose rates appeared to correlate well with the FLASH effect. (i) For the whole brain irradiation of mice performed in (Montay-Gruelet al2017), the threshold dose rate values for memory preservation coincided with those at which AUC started to decrease much less rapidly. (ii) For the proton pencil beam scanning FLASH of (Cunninghamet al2021), we found linear correlations between radicals' AUC and the biological endpoints: TGF-ß1, leg contracture and plasma level of cytokine IL-6. (iii) Compatible with the findings of the proton FLASH experiment in (Kimet al2021), we found that radicals' AUC at the entrance and mid-Spread-Out Bragg peak regions were highly similar. In addition, our model also predicted ratios of oxygen depletionG-values between normal and UHDR irradiation similar to those observed in (Caoet al2021) and (El Khatibet al2022).Significance. Collectively, our results suggest that the normal tissue sparing conferred by UHDR irradiation may be due to the lower degree of exposure to peroxyl and superoxide radicals. We also found that the differential effect of dose rate on the radicals' AUC was less pronounced at lower initial oxygen levels, a trait that appears to align with the FLASH differential effect on normal versus tumor tissues.


Assuntos
Terapia com Prótons , Prótons , Animais , Camundongos , Elétrons , Terapia com Prótons/métodos , Dosagem Radioterapêutica , Oxigênio
8.
Int J Radiat Oncol Biol Phys ; 116(5): 1202-1217, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37121362

RESUMO

FLASH radiation therapy (FLASH-RT), delivered with ultrahigh dose rate (UHDR), may allow patients to be treated with less normal tissue toxicity for a given tumor dose compared with currently used conventional dose rate. Clinical trials are being carried out and are needed to test whether this improved therapeutic ratio can be achieved clinically. During the clinical trials, quality assurance and credentialing of equipment and participating sites, particularly pertaining to UHDR-specific aspects, will be crucial for the validity of the outcomes of such trials. This report represents an initial framework proposed by the NRG Oncology Center for Innovation in Radiation Oncology FLASH working group on quality assurance of potential UHDR clinical trials and reviews current technology gaps to overcome. An important but separate consideration is the appropriate design of trials to most effectively answer clinical and scientific questions about FLASH. This paper begins with an overview of UHDR RT delivery methods. UHDR beam delivery parameters are then covered, with a focus on electron and proton modalities. The definition and control of safe UHDR beam delivery and current and needed dosimetry technologies are reviewed and discussed. System and site credentialing for large, multi-institution trials are reviewed. Quality assurance is then discussed, and new requirements are presented for treatment system standard analysis, patient positioning, and treatment planning. The tables and figures in this paper are meant to serve as reference points as we move toward FLASH-RT clinical trial performance. Some major questions regarding FLASH-RT are discussed, and next steps in this field are proposed. FLASH-RT has potential but is associated with significant risks and complexities. We need to redefine optimization to focus not only on the dose but also on the dose rate in a manner that is robust and understandable and that can be prescribed, validated, and confirmed in real time. Robust patient safety systems and access to treatment data will be critical as FLASH-RT moves into the clinical trials.


Assuntos
Credenciamento , Elétrons , Humanos , Instalações de Saúde , Posicionamento do Paciente , Tecnologia , Dosagem Radioterapêutica
9.
Front Oncol ; 12: 1004121, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36518319

RESUMO

Introduction: Radiation-induced oxygen depletion in tissue is assumed as a contributor to the FLASH sparing effects. In this study, we simulated the heterogeneous oxygen depletion in the tissue surrounding the vessels and calculated the proton FLASH effective-dose-modifying factor (FEDMF), which could be used for biology-based treatment planning. Methods: The dose and dose-weighted linear energy transfer (LET) of a small animal proton irradiator was simulated with Monte Carlo simulation. We deployed a parabolic partial differential equation to account for the generalized radiation oxygen depletion, tissue oxygen diffusion, and metabolic processes to investigate oxygen distribution in 1D, 2D, and 3D solution space. Dose and dose rates, particle LET, vasculature spacing, and blood oxygen supplies were considered. Using a similar framework for the hypoxic reduction factor (HRF) developed previously, the FEDMF was derived as the ratio of the cumulative normoxic-equivalent dose (CNED) between CONV and UHDR deliveries. Results: Dynamic equilibrium between oxygen diffusion and tissue metabolism can result in tissue hypoxia. The hypoxic region displayed enhanced radio-resistance and resulted in lower CNED under UHDR deliveries. In 1D solution, comparing 15 Gy proton dose delivered at CONV 0.5 and UHDR 125 Gy/s, 61.5% of the tissue exhibited ≥20% FEDMF at 175 µm vasculature spacing and 18.9 µM boundary condition. This percentage reduced to 34.5% and 0% for 8 and 2 Gy deliveries, respectively. Similar trends were observed in the 3D solution space. The FLASH versus CONV differential effect remained at larger vasculature spacings. A higher FLASH dose rate showed an increased region with ≥20% FEDMF. A higher LET near the proton Bragg peak region did not appear to alter the FLASH effect. Conclusion: We developed 1D, 2D, and 3D oxygen depletion simulation process to obtain the dynamic HRF and derive the proton FEDMF related to the dose delivery parameters and the local tissue vasculature information. The phenomenological model can be used to simulate or predict FLASH effects based on tissue vasculature and oxygen concentration data obtained from other experiments.

10.
Radiat Res ; 198(2): 181-189, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35640166

RESUMO

FLASH is a high-dose-rate form of radiation therapy that has the reported ability, compared with conventional dose rates, to spare normal tissues while being equipotent in tumor control, thereby increasing the therapeutic ratio. The mechanism underlying this normal tissue sparing effect is currently unknown, however one possibility is radiochemical oxygen depletion (ROD) during dose delivery in tissue at FLASH dose rates. In order to investigate this possibility, we used the phosphorescence quenching method to measure oxygen partial pressure before, during and after proton radiation delivery in model solutions and in normal muscle and sarcoma tumors in mice, at both conventional (Conv) (∼0.5 Gy/s) and FLASH (∼100 Gy/s) dose rates. Radiation dosimetry was determined by Advanced Markus Chamber and EBT-XL film. For solutions contained in sealed glass vials, phosphorescent probe Oxyphor PtG4 (1 µM) was dissolved in a buffer (10 mM HEPES) containing glycerol (1 M), glucose (5 mM) and glutathione (5 mM), designed to mimic the reducing and free radical-scavenging nature of the intracellular environment. In vivo oxygen measurements were performed 24 h after injection of PtG4 into the interstitial space of either normal thigh muscle or subcutaneous sarcoma tumors in mice. The "g-value" for ROD is reported in mmHg/Gy, which represents a slight modification of the more standard chemical definition (µM/Gy). In solutions, proton irradiation at conventional dose rates resulted in a g-value for ROD of up to 0.55 mmHg/Gy, consistent with earlier studies using X or gamma rays. At FLASH dose rates, the g-value for ROD was ∼25% lower, 0.37 mmHg/Gy. pO2 levels were stable after each dose delivery. For normal muscle in vivo, oxygen depletion during irradiation was counterbalanced by resupply from the vasculature. This process was fast enough to maintain tissue pO2 virtually unchanged at Conv dose rates. However, during FLASH irradiation there was a stepwise decrease in pO2 (g-value ∼0.28 mmHg/Gy), followed by a rebound to the initial level after ∼8 s. The g-values were smaller and recovery times longer in tumor tissue when compared to muscle and may be related to the lower initial endogenous pO2 levels in the former. Considering that the FLASH effect is seen in vivo even at doses as low as 10 Gy, it is difficult to reconcile the amount of protection seen by oxygen depletion alone. However, the phosphorescence probe in our experiments was confined to the extracellular space, and it remains possible that intracellular oxygen depletion was greater than observed herein. In cell-mimicking solutions the oxygen depletion g-vales were indeed significantly higher than observed in vivo.


Assuntos
Prótons , Sarcoma , Animais , Raios gama , Camundongos , Oxigênio , Radiometria/métodos , Dosagem Radioterapêutica , Sarcoma/radioterapia
11.
Int J Radiat Oncol Biol Phys ; 113(3): 624-634, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35314293

RESUMO

PURPOSE: Radiation therapy delivered at ultrafast dose rates, known as FLASH RT, has been shown to provide a therapeutic advantage compared with conventional radiation therapy by selectively protecting normal tissues. Radiochemical depletion of oxygen has been proposed to underpin the FLASH effect; however, experimental validation of this hypothesis has been lacking, in part owing to the inability to measure oxygenation at rates compatible with FLASH. METHODS AND MATERIALS: We present a new variant of the phosphorescence quenching method for tracking oxygen dynamics with rates reaching up to ∼3.3 kHz. Using soluble Oxyphor probes we were able to resolve, both in vitro and in vivo, oxygen dynamics during the time of delivery of proton FLASH. RESULTS: In vitro in solutions containing bovine serum albumin the O2 depletion g values (moles/L of O2 depleted per radiation dose, eg, µM/Gy) are higher for conventional irradiation (by ∼13% at 75 µM [O2]) than for FLASH, and in the low-oxygen region (<25 µM [O2]) they decrease with oxygen concentration. In vivo, depletion of oxygen by a single FLASH is insufficient to achieve severe hypoxia in initially well-oxygenated tissue, and the g values measured appear to correlate with baseline oxygen levels. CONCLUSIONS: The developed method should be instrumental in radiobiological studies, such as studies aimed at unraveling the mechanism of the FLASH effect. The FLASH effect could in part originate from the difference in the oxygen dependencies of the oxygen consumption g values for conventional versus FLASH RT.


Assuntos
Terapia com Prótons , Prótons , Humanos , Pulmão , Oxigênio , Terapia com Prótons/métodos , Radiobiologia , Dosagem Radioterapêutica
12.
Cancers (Basel) ; 14(3)2022 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-35158971

RESUMO

We evaluate radiomic phenotypes derived from CT scans as early predictors of overall survival (OS) after chemoradiation in stage III primary lung adenocarcinoma. We retrospectively analyzed 110 thoracic CT scans acquired between April 2012-October 2018. Patients received a median radiation dose of 66.6 Gy at 1.8 Gy/fraction delivered with proton (55.5%) and photon (44.5%) beam treatment, as well as concurrent chemotherapy (89%) with carboplatin-based (55.5%) and cisplatin-based (36.4%) doublets. A total of 56 death events were recorded. Using manual tumor segmentations, 107 radiomic features were extracted. Feature harmonization using ComBat was performed to mitigate image heterogeneity due to the presence or lack of intravenous contrast material and variability in CT scanner vendors. A binary radiomic phenotype to predict OS was derived through the unsupervised hierarchical clustering of the first principal components explaining 85% of the variance of the radiomic features. C-scores and likelihood ratio tests (LRT) were used to compare the performance of a baseline Cox model based on ECOG status and age, with a model integrating the radiomic phenotype with such clinical predictors. The model integrating the radiomic phenotype (C-score = 0.69, 95% CI = (0.62, 0.77)) significantly improved (p<0.005) upon the baseline model (C-score = 0.65, CI = (0.57, 0.73)). Our results suggest that harmonized radiomic phenotypes can significantly improve OS prediction in stage III NSCLC after chemoradiation.

13.
Med Phys ; 49(3): 2039-2054, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34644403

RESUMO

We review the current status of proton FLASH experimental systems, including preclinical physical and biological results. Technological limitations on preclinical investigation of FLASH biological mechanisms and determination of clinically relevant parameters are discussed. A review of the biological data reveals no reproduced proton FLASH effect in vitro and a significant in vivo FLASH sparing effect of normal tissue toxicity observed with multiple proton FLASH irradiation systems. Importantly, multiple studies suggest little or no difference in tumor growth delay for proton FLASH when compared to conventional dose rate proton radiation. A discussion follows on future areas of development with a focus on the determination of the optimal parameters for maximizing the therapeutic ratio between tumor and normal tissue response and ultimately clinical translation of proton FLASH radiation.


Assuntos
Neoplasias , Terapia com Prótons , Humanos , Terapia com Prótons/métodos , Prótons , Radiação Ionizante , Dosagem Radioterapêutica
14.
Sci Rep ; 11(1): 21304, 2021 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-34716381

RESUMO

3D patient-derived organoids (PDOs) have been utilized to evaluate potential therapies for patients with different cancers. However, the use of PDOs created from treatment-naive patient biopsies for prediction of clinical outcomes in patients with esophageal cancer has not yet been reported. Herein we describe a pilot prospective observational study with the goal of determining whether esophageal cancer PDOs created from treatment naive patients can model or predict clinical outcomes. Endoscopic biopsies of treatment-naive patients at a single tertiary care center were used to generate esophageal cancer PDOs, which were treated with standard-of-care chemotherapy, gamma-irradiation, and newer non-standard approaches, such as proton beam therapy or two small molecule inhibitors. Clinical outcomes of patients following neoadjuvant treatment were compared to their in vitro PDO responses, demonstrating the PDO's ability to mirror clinical response, suggesting the value of PDOs in prediction of clinical response to new therapeutic approaches. Future prospective clinical trials should test the use of pre-treatment PDOs to identify specific, targeted therapies for individual patients with esophageal adenocarcinoma.


Assuntos
Adenocarcinoma/terapia , Antineoplásicos/farmacologia , Quimiorradioterapia/métodos , Neoplasias Esofágicas/terapia , Terapia Neoadjuvante , Organoides/efeitos dos fármacos , Idoso , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Humanos , Masculino , Pessoa de Meia-Idade , Projetos Piloto , Medicina de Precisão , Estudos Prospectivos
15.
Cancers (Basel) ; 13(16)2021 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-34439398

RESUMO

Ultra-high dose rate FLASH proton radiotherapy (F-PRT) has been shown to reduce normal tissue toxicity compared to standard dose rate proton radiotherapy (S-PRT) in experiments using the entrance portion of the proton depth dose profile, while proton therapy uses a spread-out Bragg peak (SOBP) with unknown effects on FLASH toxicity sparing. To investigate, the biological effects of F-PRT using an SOBP and the entrance region were compared to S-PRT in mouse intestine. In this study, 8-10-week-old C57BL/6J mice underwent 15 Gy (absorbed dose) whole abdomen irradiation in four groups: (1) SOBP F-PRT, (2) SOBP S-PRT, (3) entrance F-PRT, and (4) entrance S-PRT. Mice were injected with EdU 3.5 days after irradiation, and jejunum segments were harvested and preserved. EdU-positive proliferating cells and regenerated intestinal crypts were quantified. The SOBP had a modulation (width) of 2.5 cm from the proximal to distal 90%. Dose rates with a SOBP for F-PRT or S-PRT were 108.2 ± 8.3 Gy/s or 0.82 ± 0.14 Gy/s, respectively. In the entrance region, dose rates were 107.1 ± 15.2 Gy/s and 0.83 ± 0.19 Gy/s, respectively. Both entrance and SOBP F-PRT preserved a significantly higher number of EdU + /crypt cells and percentage of regenerated crypts compared to S-PRT. Moreover, tumor growth studies showed no difference between SOBP and entrance for either of the treatment modalities.

16.
Cancer Res ; 81(18): 4808-4821, 2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34321243

RESUMO

In studies of electron and proton radiotherapy, ultrahigh dose rates of FLASH radiotherapy appear to produce fewer toxicities than standard dose rates while maintaining local tumor control. FLASH-proton radiotherapy (F-PRT) brings the spatial advantages of PRT to FLASH dose rates (>40 Gy/second), making it important to understand if and how F-PRT spares normal tissues while providing antitumor efficacy that is equivalent to standard-proton radiotherapy (S-PRT). Here we studied PRT damage to skin and mesenchymal tissues of muscle and bone and found that F-PRT of the C57BL/6 murine hind leg produced fewer severe toxicities leading to death or requiring euthanasia than S-PRT of the same dose. RNA-seq analyses of murine skin and bone revealed pathways upregulated by S-PRT yet unaltered by F-PRT, such as apoptosis signaling and keratinocyte differentiation in skin, as well as osteoclast differentiation and chondrocyte development in bone. Corroborating these findings, F-PRT reduced skin injury, stem cell depletion, and inflammation, mitigated late effects including lymphedema, and decreased histopathologically detected myofiber atrophy, bone resorption, hair follicle atrophy, and epidermal hyperplasia. F-PRT was equipotent to S-PRT in control of two murine sarcoma models, including at an orthotopic intramuscular site, thereby establishing its relevance to mesenchymal cancers. Finally, S-PRT produced greater increases in TGFß1 in murine skin and the skin of canines enrolled in a phase I study of F-PRT versus S-PRT. Collectively, these data provide novel insights into F-PRT-mediated tissue sparing and support its ongoing investigation in applications that would benefit from this sparing of skin and mesenchymal tissues. SIGNIFICANCE: These findings will spur investigation of FLASH radiotherapy in sarcoma and additional cancers where mesenchymal tissues are at risk, including head and neck cancer, breast cancer, and pelvic malignancies.


Assuntos
Epitélio , Tratamentos com Preservação do Órgão , Terapia com Prótons , Sarcoma/patologia , Sarcoma/radioterapia , Animais , Osso e Ossos/patologia , Osso e Ossos/efeitos da radiação , Modelos Animais de Doenças , Cães , Epitélio/efeitos da radiação , Feminino , Perfilação da Expressão Gênica , Humanos , Camundongos , Morbidade , Músculos/patologia , Músculos/efeitos da radiação , Tratamentos com Preservação do Órgão/métodos , Terapia com Prótons/efeitos adversos , Terapia com Prótons/métodos , Lesões por Radiação/diagnóstico , Lesões por Radiação/etiologia , Dosagem Radioterapêutica , Sarcoma/metabolismo , Pele/efeitos da radiação , Resultado do Tratamento
17.
Med Phys ; 48(7): 3948-3957, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33843065

RESUMO

INTRODUCTION: Ultra-high dose rate (FLASH) radiotherapy has become a popular research topic with the potential to reduce normal tissue toxicities without losing the benefit of tumor control. The development of FLASH proton pencil beam scanning (PBS) delivery requires accurate dosimetry despite high beam currents with correspondingly high ionization densities in the monitoring chamber. In this study, we characterized a newly designed high-resolution position sensing transmission ionization chamber with a purpose-built multichannel electrometer for both conventional and FLASH dose rate proton radiotherapy. METHODS: The dosimetry and positioning accuracies of the ion chamber were fully characterized with a clinical scanning beam. On the FLASH proton beamline, the cyclotron output current reached up to 350 nA with a maximum energy of 226.2 MeV, with 210 ± 3 nA nozzle pencil beam current. The ion recombination effect was characterized under various bias voltages up to 1000 V and different beam intensities. The charge collected by the transmission ion chamber was compared with the measurements from a Faraday cup. RESULTS: Cross-calibrated with an Advanced Markus chamber (PTW, Freiburg, Germany) in a uniform PBS proton beam field at clinical beam setting, the ion chamber calibration was 38.0 and 36.7 GyE·mm2 /nC at 100 and 226.2 MeV, respectively. The ion recombination effect increased with larger cyclotron current at lower bias voltage while remaining ≤0.5 ± 0.5% with ≥200 V of bias voltage. Above 200 V, the normalized ion chamber readings demonstrated good linearity with the mass stopping power in air for both clinical and FLASH beam intensities. The spot positioning accuracy was measured to be 0.10 ± 0.08 mm in two orthogonal directions. CONCLUSION: We characterized a transmission ion chamber system under both conventional and FLASH beam current densities and demonstrated its suitability for use as a proton pencil beam dose and spot position delivery monitor under FLASH dose rate conditions.


Assuntos
Terapia com Prótons , Prótons , Alemanha , Radiometria , Dosagem Radioterapêutica
18.
Radiother Oncol ; 155: 212-218, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33186682

RESUMO

PURPOSE: Proton Pencil Beam Scanning (PBS) is an attractive solution to realize the advantageous normal tissue sparing elucidated from FLASH high dose rates. The mechanics of PBS spot delivery will impose limitations on the effective field dose rate for PBS. METHODS: This study incorporates measurements from clinical and FLASH research beams on uniform single energy and the spread-out Bragg Peak PBS fields to extrapolate the PBS dose rate to high cyclotron beam currents 350, 500, and 800 nA. The impact of the effective field dose rate from cyclotron current, spot spacing, slew time and field size were studied. RESULTS: When scanning magnet slew time and energy switching time are not considered, single energy effective field FLASH dose rate (≥40 Gy/s) can only be achieved with less than 4 × 4 cm2 fields when the cyclotron output current is above 500 nA. Slew time and energy switching time remain the limiting factors for achieving high effective dose rate of the field. The dose rate-time structures were obtained. The amount of the total dose delivered at the FLASH dose rate in single energy layer and volumetric field was also studied. CONCLUSION: It is demonstrated that while it is difficult to achieve FLASH dose rate for a large field or in a volume, local FLASH delivery to certain percentage of the total dose is possible. With further understanding of the FLASH radiobiological mechanism, this study could provide guidance to adapt current clinical multi-field proton PBS delivery practice for FLASH proton radiotherapy.


Assuntos
Terapia com Prótons , Prótons , Humanos , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador
19.
Clin Transl Radiat Oncol ; 22: 69-75, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32274426

RESUMO

BACKGROUND AND PURPOSE: Radiation esophagitis is a clinically important toxicity seen with treatment for locally-advanced non-small cell lung cancer. There is considerable disagreement among prior studies in identifying predictors of radiation esophagitis. We apply machine learning algorithms to identify factors contributing to the development of radiation esophagitis to uncover previously unidentified criteria and more robust dosimetric factors. MATERIALS AND METHODS: We used machine learning approaches to identify predictors of grade ≥ 3 radiation esophagitis in a cohort of 202 consecutive locally-advanced non-small cell lung cancer patients treated with definitive chemoradiation from 2008 to 2016. We evaluated 35 clinical features per patient grouped into risk factors, comorbidities, imaging, stage, histology, radiotherapy, chemotherapy and dosimetry. Univariate and multivariate analyses were performed using a panel of 11 machine learning algorithms combined with predictive power assessments. RESULTS: All patients were treated to a median dose of 66.6 Gy at 1.8 Gy per fraction using photon (89.6%) and proton (10.4%) beam therapy, most often with concurrent chemotherapy (86.6%). 11.4% of patients developed grade ≥ 3 radiation esophagitis. On univariate analysis, no individual feature was found to predict radiation esophagitis (AUC range 0.45-0.55, p ≥ 0.07). In multivariate analysis, all machine learning algorithms exhibited poor predictive performance (AUC range 0.46-0.56, p ≥ 0.07). CONCLUSIONS: Contemporary machine learning algorithms applied to our modern, relatively large institutional cohort could not identify any reliable predictors of grade ≥ 3 radiation esophagitis. Additional patients are needed, and novel patient-specific and treatment characteristics should be investigated to develop clinically meaningful methods to mitigate this survival altering toxicity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...