Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Funct Plant Biol ; 49(10): 845-860, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35753342

RESUMO

Acid soils limit yields of many important crops including canola (Brassica napus ), Australia's third largest crop. Aluminium (Al3+ ) stress is the main cause of this limitation primarily because the toxic Al3+ present inhibits root growth. Breeding programmes do not target acid-soil tolerance in B. napus because genetic variation and convincing quantitative trait loci have not been reported. We conducted a genome-wide association study (GWAS) using the BnASSYST diversity panel of B. napus genotyped with 35 729 high-quality DArTseq markers. We screened 352 B. napus accessions in hydroponics with and without a toxic concentration of AlCl3 (12µM, pH 4.3) for 12days and measured shoot biomass, root biomass, and root length. By accounting for both population structure and kinship matrices, five significant quantitative trait loci for different measures of resistance were identified using incremental Al3+ resistance indices. Within these quantitative trait locus regions of B. napus , 40 Arabidopsis thaliana gene orthologues were identified, including some previously linked with Al3+ resistance. GWAS analysis indicated that multiple genes are responsible for the natural variation in Al3+ resistance in B. napus . The results provide new genetic resources and markers to enhance that Al3+ resistance of B. napus germplasm via genomic and marker-assisted selection.


Assuntos
Brassica napus , Brassica napus/genética , Mapeamento Cromossômico , Estudo de Associação Genômica Ampla , Melhoramento Vegetal , Locos de Características Quantitativas/genética
2.
Front Plant Sci ; 12: 678211, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34249045

RESUMO

In acid soils, the toxic form of aluminium, Al3+, significantly inhibits root growth and elongation, leading to less water and nutrient uptake. Previous research had shown differential Al toxicity tolerance among cultivated Cicer arietinum L. (chickpea); however, the potential for developing tolerant cultivars is limited by the narrow genetic diversity of cultivated chickpeas. Recent collections from Turkey of wild Cicer species, Cicer reticulatum, and Cicer echinospermum, have increased the available gene pool significantly, but there has been no large-scale screening of wild Cicer for acid tolerance or Al3+ toxicity tolerance. This study evaluated 167 wild Cicer and 17 Australian chickpea cultivars in a series of screenings under controlled growth conditions. The pH of 4.2 and Al concentrations of 15 and 60 µM Al were selected for large-scale screening based on dose response experiments in a low ionic strength nutrient solution. The change in root length showed better discrimination between tolerant and sensitive lines when compared with shoot and root dry weights and was used as a selection criterion. In a large-scale screening, 13 wild Cicer reticulatum accessions had a higher root tolerance index (≥50%), and eight had higher relative change in root length (≥40%) compared with PBA Monarch, which showed greater tolerance among the Australian domestic cultivars screened. In general, C. reticulatum species were found to be more tolerant than C. echinospermum, while genetic population groups Ret_5, Ret_6, and Ret_7 from Diyarbakir and Mardin Province were more tolerant than other groups. Among C. echinospermum, Ech_6 from the Siv-Diyar collection site of the Urfa Province showed better tolerance than other groups. In this first detailed screening of aluminium toxicity tolerance in the new wild Cicer collections, we identified accessions that were more tolerant than current domestic cultivars, providing promising germplasm for breeding programs to expand chickpea adaptation to acid soils.

3.
Eur J Nutr ; 60(7): 4001-4017, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33950401

RESUMO

PURPOSE: The combined effects of grain digestibility and dietary fibre on digesta passage rate and satiety in humans are poorly understood. Satiety can be increased through gastric distention, reduced gastric emptying rate and when partially digested nutrients reach the terminal ileum to stimulate peptide release through the ileal/colonic brakes to slow the rate of digesta passage. This study determined the effects of grain digestibility and insoluble fibre on mean retention time (MRT) of digesta from mouth-to-ileum, feed intake (FI), starch digestion to the terminal ileum and faecal short chain fatty acids (SCFA) in a pig model. METHOD: Twelve grain-based [milled sorghum (MS), steam-flaked-sorghum, milled wheat, and steam-flaked-wheat (SFW)] diets with different intrinsic rates of starch digestion, assessed by apparent amylase diffusion coefficient (ADC), and fibre from oat hulls (OH) at 0, 5 and 20% of the diet were fed to ileal-cannulated pigs. RESULT: MRT was affected by grain-type/processing (P < 0.05) and fibre amount (P < 0.05). An approximate tenfold increase in ADC showed a limited decline in MRT (P = 0.18). OH at 20% increased MRT (P < 0.05) and reduced FI (P < 0.05). Ileal digestibility of starch increased and faecal SCFA concentration decreased with ADC; values for MS being lower (P < 0.001) and higher (P < 0.05), respectively, than for SFW. CONCLUSIONS: Lower ileal digestibility of starch, higher faecal SCFA concentration and longer MRT of MS than SFW, suggest the ileal/colonic brakes may be operating. FI appeared to decrease with increasing MRT. MRT increased and intake decreased with grain-based foods/feeds that have low starch digestibility and substantial amounts of insoluble fibre.


Assuntos
Ração Animal , Digestão , Ração Animal/análise , Animais , Dieta , Fibras na Dieta , Ingestão de Alimentos , Trato Gastrointestinal , Suínos
4.
Meat Sci ; 176: 108473, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33647631

RESUMO

This study compared longissimus lumborum (LL) and semitendinosus (ST) muscles, in 48 lamb carcasses, to determine their pH decline parameters and achievement of ideal pH criteria (hitting the window). These include the pH at temperature 18 °C (pH@18) and temperature at pH 6 (temp@pH6). No practical difference were found between muscles for pH@18 or the temp@pH6, although there were differences between the experimental carcasses evaluated. Indeed, for all but three carcasses, there were insignificant differences between the LL and ST in terms of their pH@18. This outcome suggests that the lower value and more accessible ST muscle can be measured to determine lamb carcass pH decline parameters, instead of the LL. Because of the scale of this study, additional investigation is advised prior to any adoption.


Assuntos
Concentração de Íons de Hidrogênio , Músculo Esquelético/química , Carne Vermelha/análise , Animais , Projetos Piloto , Ovinos , Temperatura
5.
Sci Rep ; 10(1): 4416, 2020 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-32157120

RESUMO

Sustainable canola production is essential to meet growing human demands for vegetable oil, biodiesel, and meal for stock feed markets. Blackleg, caused by the fungal pathogen, Leptosphaeria maculans is a devastating disease that can lead to significant yield loss in many canola production regions worldwide. Breakdown of race-specific resistance to L. maculans in commercial cultivars poses a constant threat to the canola industry. To identify new alleles, especially for quantitative resistance (QR), we analyzed 177 doubled haploid (DH) lines derived from an RP04/Ag-Outback cross. DH lines were evaluated for QR under field conditions in three experiments conducted at Wagga Wagga (2013, 2014) and Lake Green (2015), and under shade house conditions using the 'ascospore shower' test. DH lines were also characterized for qualitative R gene-mediated resistance via cotyledon tests with two differential single spore isolates, IBCN17 and IBCN76, under glasshouse conditions. Based on 18,851 DArTseq markers, a linkage map representing 2,019 unique marker bins was constructed and then utilized for QTL detection. Marker regression analysis identified 22 significant marker associations for resistance, allowing identification of two race-specific resistance R genes, Rlm3 and Rlm4, and 21 marker associations for QR loci. At least three SNP associations for QR were repeatedly detected on chromosomes A03, A07 and C04 across phenotyping environments. Physical mapping of markers linked with these consistent QR loci on the B. napus genome assembly revealed their localization in close proximity of the candidate genes of B. napus BnaA03g26760D (A03), BnaA07g20240D (A07) and BnaC04g02040D (C04). Annotation of these candidate genes revealed their association with protein kinase and jumonji proteins implicated in defense resistance. Both Rlm3 and Rlm4 genes identified in this DH population did not show any association with resistance loci detected under either field and/or shade house conditions (ascospore shower) suggesting that both genes are ineffective in conferring resistance to L. maculans in Australian field conditions. Taken together, our study identified sequence-based molecular markers for dissecting R and QR loci to L. maculans in a canola DH population from the RP04/Ag-Outback cross.


Assuntos
Brassica napus/crescimento & desenvolvimento , Mapeamento Cromossômico/métodos , Resistência à Doença , Locos de Características Quantitativas , Brassica napus/genética , Brassica napus/microbiologia , Ligação Genética , Haploidia , Fenótipo , Doenças das Plantas/microbiologia , Proteínas de Plantas/genética , Polimorfismo de Nucleotídeo Único , Análise de Regressão
6.
Food Funct ; 10(12): 8298-8308, 2019 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-31723952

RESUMO

Undigested nutrients and fermentable fibre in the distal ileum and colon stimulate intestinal brakes, which reduce gastric-emptying and digesta-passage-rate, and subsequently limit feed/food-intake. Fibre can also stimulate passage rate potentially increasing feed intake (FI). In order to experimentally determine the relationships between these two hypothesised actions of fibre, five levels of wheat-bran (WB) or oat-hulls (OH) were added to a highly digestible starch-based diet fed to pigs ad-libitum for three weeks. Average-daily-feed-intake (ADFI), faecal short-chain-fatty-acids (SCFA) and related parameters were determined at 7, 14 and 21d. A linear mixed model was fitted to FI and fermentation parameters. Overall, WB diets showed 8-11% lower ADFI (7-14d: p < 0.05; 7-21 & 0-21d: p = 0.053) than OH diets. WB diets produced over 20% more (21d: p < 0.01) SCFA than OH or Control diets. WB at 25% produced 22% more (7d: p < 0.05) SCFA than any other diet. Diets with WB at 25 and 35%, showed higher hydration capacity than any other diet (p < 0.001). OH at 10% had an unusually low FI and a markedly higher hydration capacity. With increasing levels of OH, intake of base diet was 7% more than control at 5% OH, but 8% less than control at 20% OH. With increasing WB content, intake of base diet decreased. From these results, we propose that three mechanisms control the effects of fibre on FI: initial increase in passage rate and feed intake at low concentrations of non-swelling fibres; a depression in FI from high fibre bulk; and reduced feed intake from stimulation of ileal and colonic brakes.


Assuntos
Ração Animal/análise , Avena/metabolismo , Fibras na Dieta/metabolismo , Ingestão de Alimentos , Suínos/fisiologia , Triticum/metabolismo , Animais , Colo/metabolismo , Digestão , Ácidos Graxos Voláteis/análise , Ácidos Graxos Voláteis/metabolismo , Fezes/química , Íleo/metabolismo , Masculino , Água/metabolismo
7.
Front Plant Sci ; 9: 1622, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30532758

RESUMO

The hemibiotrophic fungus, Leptosphaeria maculans is the most devastating pathogen, causing blackleg disease in canola (Brassica napus L). To study the genomic regions involved in quantitative resistance (QR), 259-276 DH lines from Darmor-bzh/Yudal (DYDH) population were assessed for resistance to blackleg under shade house and field conditions across 3 years. In different experiments, the broad sense heritability varied from 43 to 95%. A total of 27 significant quantitative trait loci (QTL) for QR were detected on 12 chromosomes and explained between 2.14 and 10.13% of the genotypic variance. Of the significant QTL, at least seven were repeatedly detected across different experiments on chromosomes A02, A07, A09, A10, C01, and C09. Resistance alleles were mainly contributed by 'Darmor-bzh' but 'Yudal' also contributed few of them. Our results suggest that plant maturity and plant height may have a pleiotropic effect on QR in our conditions. We confirmed that Rlm9 which is present in 'Darmor-bzh' is not effective to confer resistance in our Australian field conditions. Comparative mapping showed that several R genes coding for nucleotide-binding leucine-rich repeat (LRR) receptors map in close proximity (within 200 Kb) of the significant trait-marker associations on the reference 'Darmor-bzh' genome assembly. More importantly, eight significant QTL regions were detected across diverse growing environments: Australia, France, and United Kingdom. These stable QTL identified herein can be utilized for enhancing QR in elite canola germplasm via marker- assisted or genomic selection strategies.

8.
Front Plant Sci ; 7: 1513, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27822217

RESUMO

Key message "We identified both quantitative and quantitative resistance loci to Leptosphaeria maculans, a fungal pathogen, causing blackleg disease in canola. Several genome-wide significant associations were detected at known and new loci for blackleg resistance. We further validated statistically significant associations in four genetic mapping populations, demonstrating that GWAS marker loci are indeed associated with resistance to L. maculans. One of the novel loci identified for the first time, Rlm12, conveys adult plant resistance in canola." Blackleg, caused by Leptosphaeria maculans, is a significant disease which affects the sustainable production of canola (Brassica napus). This study reports a genome-wide association study based on 18,804 polymorphic SNPs to identify loci associated with qualitative and quantitative resistance to L. maculans. Genomic regions delimited with 694 significant SNP markers, that are associated with resistance evaluated using 12 single spore isolates and pathotypes from four canola stubble were identified. Several significant associations were detected at known disease resistance loci including in the vicinity of recently cloned Rlm2/LepR3 genes, and at new loci on chromosomes A01/C01, A02/C02, A03/C03, A05/C05, A06, A08, and A09. In addition, we validated statistically significant associations on A01, A07, and A10 in four genetic mapping populations, demonstrating that GWAS marker loci are indeed associated with resistance to L. maculans. One of the novel loci identified for the first time, Rlm12, conveys adult plant resistance and mapped within 13.2 kb from Arabidopsis R gene of TIR-NBS class. We showed that resistance loci are located in the vicinity of R genes of Arabidopsis thaliana and Brassica napus on the sequenced genome of B. napus cv. Darmor-bzh. Significantly associated SNP markers provide a valuable tool to enrich germplasm for favorable alleles in order to improve the level of resistance to L. maculans in canola.

9.
PLoS One ; 9(7): e101673, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25006804

RESUMO

Resistance to pod shattering (shatter resistance) is a target trait for global rapeseed (canola, Brassica napus L.), improvement programs to minimise grain loss in the mature standing crop, and during windrowing and mechanical harvest. We describe the genetic basis of natural variation for shatter resistance in B. napus and show that several quantitative trait loci (QTL) control this trait. To identify loci underlying shatter resistance, we used a novel genotyping-by-sequencing approach DArT-Seq. QTL analysis detected a total of 12 significant QTL on chromosomes A03, A07, A09, C03, C04, C06, and C08; which jointly account for approximately 57% of the genotypic variation in shatter resistance. Through Genome-Wide Association Studies, we show that a large number of loci, including those that are involved in shattering in Arabidopsis, account for variation in shatter resistance in diverse B. napus germplasm. Our results indicate that genetic diversity for shatter resistance genes in B. napus is limited; many of the genes that might control this trait were not included during the natural creation of this species, or were not retained during the domestication and selection process. We speculate that valuable diversity for this trait was lost during the natural creation of B. napus. To improve shatter resistance, breeders will need to target the introduction of useful alleles especially from genotypes of other related species of Brassica, such as those that we have identified.


Assuntos
Brassica napus/genética , Genes de Plantas , Sementes/genética , Brassica napus/anatomia & histologia , Brassica napus/fisiologia , Mapeamento Cromossômico , Estudos de Associação Genética , Marcadores Genéticos , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Sementes/anatomia & histologia , Sementes/fisiologia
10.
Plant Biotechnol J ; 12(7): 851-60, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24698362

RESUMO

An Illumina Infinium array comprising 5306 single nucleotide polymorphism (SNP) markers was used to genotype 175 individuals of a doubled haploid population derived from a cross between Skipton and Ag-Spectrum, two Australian cultivars of rapeseed (Brassica napus L.). A genetic linkage map based on 613 SNP and 228 non-SNP (DArT, SSR, SRAP and candidate gene markers) covering 2514.8 cM was constructed and further utilized to identify loci associated with flowering time and resistance to blackleg, a disease caused by the fungus Leptosphaeria maculans. Comparison between genetic map positions of SNP markers and the sequenced Brassica rapa (A) and Brassica oleracea (C) genome scaffolds showed several genomic rearrangements in the B. napus genome. A major locus controlling resistance to L. maculans was identified at both seedling and adult plant stages on chromosome A07. QTL analyses revealed that up to 40.2% of genetic variation for flowering time was accounted for by loci having quantitative effects. Comparative mapping showed Arabidopsis and Brassica flowering genes such as Phytochrome A/D, Flowering Locus C and agamous-Like MADS box gene AGL1 map within marker intervals associated with flowering time in a DH population from Skipton/Ag-Spectrum. Genomic regions associated with flowering time and resistance to L. maculans had several SNP markers mapped within 10 cM. Our results suggest that SNP markers will be suitable for various applications such as trait introgression, comparative mapping and high-resolution mapping of loci in B. napus.


Assuntos
Brassica napus/genética , Polimorfismo de Nucleotídeo Único , Brassica napus/crescimento & desenvolvimento , Brassica napus/microbiologia , Mapeamento Cromossômico , Resistência à Doença/genética , Ligação Genética , Genótipo , Haploidia , Doenças das Plantas/microbiologia , Locos de Características Quantitativas
11.
Theor Appl Genet ; 118(8): 1519-37, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19283360

RESUMO

While the genetic control of wheat processing characteristics such as dough rheology is well understood, limited information is available concerning the genetic control of baking parameters, particularly sponge and dough (S&D) baking. In this study, a quantitative trait loci (QTL) analysis was performed using a population of doubled haploid lines derived from a cross between Australian cultivars Kukri x Janz grown at sites across different Australian wheat production zones (Queensland in 2001 and 2002 and Southern and Northern New South Wales in 2003) in order to examine the genetic control of protein content, protein expression, dough rheology and sponge and dough baking performance. The study highlighted the inconsistent genetic control of protein content across the test sites, with only two loci (3A and 7A) showing QTL at three of the five sites. Dough rheology QTL were highly consistent across the 5 sites, with major effects associated with the Glu-B1 and Glu-D1 loci. The Glu-D1 5 + 10 allele had consistent effects on S&D properties across sites; however, there was no evidence for a positive effect of the high dough strength Glu-B1-al allele at Glu-B1. A second locus on 5D had positive effects on S&D baking at three of five sites. This study demonstrated that dough rheology measurements were poor predictors of S&D quality. In the absence of robust predictive tests, high heritability values for S&D demonstrate that direct selection is the current best option for achieving genetic gain in this product category.


Assuntos
Cromossomos de Plantas , Farinha , Proteínas de Plantas/química , Locos de Características Quantitativas , Triticum/genética , Alelos , Austrália , Mapeamento Cromossômico , Cruzamentos Genéticos , Genes de Plantas , Gliadina/química , Glutens/química , Haploidia , Peso Molecular , Reologia , Zea mays/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...