Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Ther Methods Clin Dev ; 17: 258-270, 2020 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-31970203

RESUMO

GM1 gangliosidosis (GM1) is a fatal neurodegenerative lysosomal storage disease that occurs most commonly in young children, with no effective treatment available. Long-term follow-up of GM1 cats treated by bilateral thalamic and deep cerebellar nuclei (DCN) injection of adeno-associated virus (AAV)-mediated gene therapy has increased lifespan to 8 years of age, compared with an untreated lifespan of ~8 months. Due to risks associated with cerebellar injection in humans, the lateral ventricle was tested as a replacement route to deliver an AAVrh8 vector expressing feline ß-galactosidase (ß-gal), the defective enzyme in GM1. Treatment via the thalamus and lateral ventricle corrected storage, myelination, astrogliosis, and neuronal morphology in areas where ß-gal was effectively delivered. Oligodendrocyte number increased, but only in areas where myelination was corrected. Reduced AAV and ß-gal distribution were noted in the cerebellum with subsequent increases in storage, demyelination, astrogliosis, and neuronal degeneration. These postmortem findings were correlated with endpoint MRI and magnetic resonance spectroscopy (MRS). Compared with the moderate dose with which most cats were treated, a higher AAV dose produced superior survival, currently 6.5 years. Thus, MRI and MRS can predict therapeutic efficacy of AAV gene therapy and non-invasively monitor cellular events within the GM1 brain.

2.
Mol Ther ; 28(2): 411-421, 2020 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-31813800

RESUMO

Global gene delivery to the CNS has therapeutic importance for the treatment of neurological disorders that affect the entire CNS. Due to direct contact with the CNS, cerebrospinal fluid (CSF) is an attractive route for CNS gene delivery. A safe and effective route to achieve global gene distribution in the CNS is needed, and administration of genes through the cisterna magna (CM) via a suboccipital puncture results in broad distribution in the brain and spinal cord. However, translation of this technique to clinical practice is challenging due to the risk of serious and potentially fatal complications in patients. Herein, we report development of a gene therapy delivery method to the CM through adaptation of an intravascular microcatheter, which can be safely navigated intrathecally under fluoroscopic guidance. We examined the safety, reproducibility, and distribution/transduction of this method in sheep using a self-complementary adeno-associated virus 9 (scAAV9)-GFP vector. This technique was used to treat two Tay-Sachs disease patients (30 months old and 7 months old) with AAV gene therapy. No adverse effects were observed during infusion or post-treatment. This delivery technique is a safe and minimally invasive alternative to direct infusion into the CM, achieving broad distribution of AAV gene transfer to the CNS.


Assuntos
Cisterna Magna/metabolismo , Dependovirus/genética , Expressão Gênica , Técnicas de Transferência de Genes , Vetores Genéticos/genética , Transdução Genética , Animais , Catéteres , Sistema Nervoso Central/metabolismo , Genes Reporter , Terapia Genética , Vetores Genéticos/administração & dosagem , Humanos , Injeções Espinhais , Imageamento por Ressonância Magnética , Modelos Animais , Ovinos , Cirurgia Assistida por Computador , Tomografia Computadorizada por Raios X , Transgenes , Gravação em Vídeo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...