Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 146(7): 4444-4454, 2024 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-38166378

RESUMO

Lasso peptides make up a class of natural products characterized by a threaded structure. Given their small size and stability, chemical synthesis would offer tremendous potential for the development of novel therapeutics. However, the accessibility of the pre-folded lasso architecture has limited this advance. To better understand the folding process de novo, simulations are used herein to characterize the folding propensity of microcin J25 (MccJ25), a lasso peptide known for its antimicrobial properties. New algorithms are developed to unambiguously distinguish threaded from nonthreaded precursors and determine handedness, a key feature in natural lasso peptides. We find that MccJ25 indeed forms right-handed pre-lassos, in contrast to past predictions but consistent with all natural lasso peptides. Additionally, the native pre-lasso structure is shown to be metastable prior to ring formation but to readily transition to entropically favored unfolded and nonthreaded structures, suggesting that de novo lasso folding is rare. However, by altering the ring forming residues and appending thiol and thioester functionalities, we are able to increase the stability of pre-lasso conformations. Furthermore, conditions leading to protonation of a histidine imidazole side chain further stabilize the modified pre-lasso ensemble. This work highlights the use of computational methods to characterize lasso folding and demonstrates that de novo access to lasso structures can be facilitated by optimizing sequence, unnatural modifications, and reaction conditions like pH.


Assuntos
Bacteriocinas , Peptídeos , Conformação Proteica , Peptídeos/química , Bacteriocinas/química , Antibacterianos/química
2.
ACS Chem Biol ; 19(1): 81-88, 2024 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-38109560

RESUMO

Lasso peptides are a structurally distinct class of biologically active natural products defined by their short sequences with impressively interlocked tertiary structures. Their characteristic peptide [1]rotaxane motif confers marked proteolytic and thermal resiliency, and reports on their diverse biological functions have been credited to their exceptional sequence variability. Because of these unique properties, taken together with improved technologies for their biosynthetic production, lasso peptides are emerging as a designable scaffold for peptide-based therapeutic discovery and development. Although the defined structure of lasso peptides is recognized for its remarkable properties, the role of the motif in imparting bioactivity is less understood. For example, sungsanpin and ulleungdin are natural lasso peptides that similarly exhibit encouraging cell migration inhibitory activities in A549 lung carcinoma epithelial cells, despite sharing only one-third of the sequence homology. We hypothesized that the shape of the lasso motif is beneficial for the preorganization of the conserved residues, which might be partially retained in variants lacking the threaded structure. Herein, we describe solid-phase peptide synthesis strategies to prepare acyclic, head-to-side chain (branched), and head-to-tail (macrocyclic) cyclic variants based on the sungsanpin (Sun) and ulleungdin (Uln) sequences. Proliferation assays and time-lapse cell motility imaging studies were used to evaluate the cell inhibitory properties of natural Sun compared with the synthetic Sun and Uln isomers. These studies demonstrate that the lasso motif is not a required feature to slow cancer cell migration and more generally show that these nonthreaded isomers can retain similar activity to the natural lasso peptide despite the differences in their overall structures.


Assuntos
Neoplasias Pulmonares , Peptídeos , Humanos , Peptídeos/farmacologia , Peptídeos/química , Peptídeo Hidrolases , Movimento Celular
3.
ACS Omega ; 8(10): 9319-9325, 2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36936301

RESUMO

Progress toward the design and synthesis of ambiphilic aryl thiol-iminium-based small molecules for organocatalyzed thioacyl aminolysis is reported. Here we describe the synthesis of a novel tetrahydroisoquinoline-derived scaffold, bearing both thiol and iminium functionalities, capable of promoting the transthioesterification and subsequent amine capture reactions necessary to achieve organocatalyzed thioacyl aminolysis. Model studies demonstrate the ability of this designed organocatalyst to deliver critical intermediates capable of undergoing these individual reactions necessary for the proposed process. Future design improvements and directions toward cysteine-independent organocatalyzed native chemical ligation are discussed.

4.
Chemistry ; 23(60): 15089-15097, 2017 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-28861928

RESUMO

Four planar tripyridyl ligands (Ltripy ), 1,3,5-tris(pyridin-3-ylethynyl)benzene 1 a, 1,3,5-tris[4-(3-pyridyl)phenyl]benzene 2 a, and the hexyloxy chain functionalized derivatives 1,3,5-tris[(3-hexyloxy-5-pyridyl)ethynyl]benzene 1 b, and 1,3,5-tris[4-(3-hexyloxy-5-pyridyl)phenyl]benzene 2 b, were synthesized and used to generate a family of [Pd6 (Ltripy )8 ](BF4 )12 octahedral cages (Ltripy =1 a, b or 2 a, b). The ligands and cages were characterized using a combination of 1 H, 13 C, and DOSY nuclear magnetic resonance (NMR) spectroscopy, high resolution electrospray mass spectrometry (HR-ESI-MS), infrared (IR) spectroscopy, elemental analysis, and in three cases, X-ray crystallography. The molecular recognition properties of the cages with neutral and anionic guests were examined, in dimethyl sulfoxide (DMSO), using NMR spectroscopy, mass spectrometry and molecular modeling. No binding was observed with simple aliphatic and aromatic guest molecules. However, anionic sulfonates were found to interact with the octahedral cages and the binding interaction was size selective. The smaller [Pd6 (1 a, b)8 ]12+ cages were able to interact with three p-toluenesulfonate guest molecules while the larger [Pd6 (2 a, b)8 ]12+ systems could host four of the anionic guest molecules. To probe the importance of the hydrophobic effect, a mixed water-DMSO (1:1) solvent system was used to reexamine the binding of the neutral organic guests adamantane, anthracene, pyrene and 1,8-naphthalimide within the cages. In this solvent system all the guests except adamantane were observed to bind within the cavities of the cages. NMR spectroscopy and molecular modeling indicated that the cages bind multiple copies of the individual guests (between 3-6 guest molecules per cage).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA