Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Genome Biol ; 24(1): 30, 2023 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-36803582

RESUMO

BACKGROUND: The Ccr4-Not complex is mostly known as the major eukaryotic deadenylase. However, several studies have uncovered roles of the complex, in particular of the Not subunits, unrelated to deadenylation and relevant for translation. In particular, the existence of Not condensates that regulate translation elongation dynamics has been reported. Typical studies that evaluate translation efficiency rely on soluble extracts obtained after the disruption of cells and ribosome profiling. Yet cellular mRNAs in condensates can be actively translated and may not be present in such extracts. RESULTS: In this work, by analyzing soluble and insoluble mRNA decay intermediates in yeast, we determine that insoluble mRNAs are enriched for ribosomes dwelling at non-optimal codons compared to soluble mRNAs. mRNA decay is higher for soluble RNAs, but the proportion of co-translational degradation relative to the overall mRNA decay is higher for insoluble mRNAs. We show that depletion of Not1 and Not4 inversely impacts mRNA solubilities and, for soluble mRNAs, ribosome dwelling according to codon optimality. Depletion of Not4 solubilizes mRNAs with lower non-optimal codon content and higher expression that are rendered insoluble by Not1 depletion. By contrast, depletion of Not1 solubilizes mitochondrial mRNAs, which are rendered insoluble upon Not4 depletion. CONCLUSIONS: Our results reveal that mRNA solubility defines the dynamics of co-translation events and is oppositely regulated by Not1 and Not4, a mechanism that we additionally determine may already be set by Not1 promoter association in the nucleus.


Assuntos
Ribossomos , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Códon/metabolismo , Biossíntese de Proteínas , Ribossomos/metabolismo , Estabilidade de RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Solubilidade , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
3.
Nucleic Acids Res ; 48(20): 11408-11420, 2020 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-33084907

RESUMO

While expression of ribosomal protein genes (RPGs) in the budding yeast has been extensively studied, a longstanding enigma persists regarding their co-regulation under fluctuating growth conditions. Most RPG promoters display one of two distinct arrangements of a core set of transcription factors (TFs) and are further differentiated by the presence or absence of the HMGB protein Hmo1. However, a third group of promoters appears not to be bound by any of these proteins, raising the question of how the whole suite of genes is co-regulated. We demonstrate here that all RPGs are regulated by two distinct, but complementary mechanisms driven by the TFs Ifh1 and Sfp1, both of which are required for maximal expression in optimal conditions and coordinated downregulation upon stress. At the majority of RPG promoters, Ifh1-dependent regulation predominates, whereas Sfp1 plays the major role at all other genes. We also uncovered an unexpected protein homeostasis-dependent binding property of Hmo1 at RPG promoters. Finally, we show that the Ifh1 paralog Crf1, previously described as a transcriptional repressor, can act as a constitutive RPG activator. Our study provides a more complete picture of RPG regulation and may serve as a paradigm for unravelling RPG regulation in multicellular eukaryotes.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Regulação Fúngica da Expressão Gênica , Proteínas de Grupo de Alta Mobilidade/metabolismo , Proteínas Ribossômicas/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Estresse Fisiológico/genética , Transativadores/metabolismo , Transcrição Gênica , Sequenciamento de Cromatina por Imunoprecipitação , Proteínas de Ligação a DNA/genética , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Proteínas de Grupo de Alta Mobilidade/genética , Alvo Mecanístico do Complexo 1 de Rapamicina/antagonistas & inibidores , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Regiões Promotoras Genéticas , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Proteínas Ribossômicas/biossíntese , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Sirolimo/farmacologia , Estresse Fisiológico/efeitos dos fármacos , Transativadores/genética
4.
Genes Dev ; 34(1-2): 87-98, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31805522

RESUMO

Replication forks temporarily or terminally pause at hundreds of hard-to-replicate regions around the genome. A conserved pair of budding yeast replisome components Tof1-Csm3 (fission yeast Swi1-Swi3 and human TIMELESS-TIPIN) act as a "molecular brake" and promote fork slowdown at proteinaceous replication fork barriers (RFBs), while the accessory helicase Rrm3 assists the replisome in removing protein obstacles. Here we show that the Tof1-Csm3 complex promotes fork pausing independently of Rrm3 helicase by recruiting topoisomerase I (Top1) to the replisome. Topoisomerase II (Top2) partially compensates for the pausing decrease in cells when Top1 is lost from the replisome. The C terminus of Tof1 is specifically required for Top1 recruitment to the replisome and fork pausing but not for DNA replication checkpoint (DRC) activation. We propose that forks pause at proteinaceous RFBs through a "sTOP" mechanism ("slowing down with topoisomerases I-II"), which we show also contributes to protecting cells from topoisomerase-blocking agents.


Assuntos
Replicação do DNA/genética , DNA Topoisomerases/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Ciclo Celular/metabolismo , DNA Helicases/metabolismo , DNA Topoisomerases Tipo I/metabolismo , Proteínas de Ligação a DNA/metabolismo , Mutação , Transporte Proteico , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
5.
Genes Dev ; 33(5-6): 288-293, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30804227

RESUMO

The yeast Sfp1 protein regulates both cell division and growth but how it coordinates these processes is poorly understood. We demonstrate that Sfp1 directly controls genes required for ribosome production and many other growth-promoting processes. Remarkably, the complete set of Sfp1 target genes is revealed only by a combination of ChIP (chromatin immunoprecipitation) and ChEC (chromatin endogenous cleavage) methods, which uncover two promoter binding modes, one requiring a cofactor and the other a DNA-recognition motif. Glucose-regulated Sfp1 binding at cell cycle "START" genes suggests that Sfp1 controls cell size by coordinating expression of genes implicated in mass accumulation and cell division.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Regulação Fúngica da Expressão Gênica/genética , Redes Reguladoras de Genes/genética , Regiões Promotoras Genéticas/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/genética , Imunoprecipitação da Cromatina , Proteínas de Ligação a DNA/genética , Glucose/metabolismo , Ligação Proteica , RNA Polimerase II/metabolismo , Regulon/genética , Proteínas de Saccharomyces cerevisiae/genética
6.
Mol Biol Rep ; 45(5): 1001-1011, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30030774

RESUMO

HIRA is a histone chaperone known to modulate gene expression through the deposition of H3.3. Conditional knockout of Hira in embryonic mouse hearts leads to cardiac septal defects. Loss of function mutation in HIRA, together with other chromatin modifiers, was found in patients with congenital heart diseases. However, the effects of HIRA on gene expression at earlier stages of cardiogenic mesoderm differentiation have not yet been studied. Differentiation of mouse embryonic stem cells (mESCs) towards cardiomyocytes mimics some of these early events and is an accepted model of these early stages. We performed RNA-Seq and H3.3-HA ChIP-seq on both WT and Hira-null mESCs and early cardiomyocyte progenitors of both genotypes. Analysis of RNA-seq data showed differential down regulation of cardiovascular development-related genes in Hira-null cardiomyocytes compared to WT cardiomyocytes. We found HIRA-dependent H3.3 deposition at these genes. In particular, we observed that HIRA influenced directly the expression of the transcription factors Gata6, Meis1 and Tbx2, essential for cardiac septation, through H3.3 deposition. We therefore identified new direct targets of HIRA during cardiac differentiation.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Chaperonas de Histonas/metabolismo , Células-Tronco Embrionárias Murinas/citologia , Miócitos Cardíacos/citologia , Análise de Sequência de RNA/métodos , Fatores de Transcrição/genética , Animais , Diferenciação Celular , Linhagem Celular , Regulação para Baixo , Elementos Facilitadores Genéticos , Fator de Transcrição GATA6/genética , Defeitos dos Septos Cardíacos/embriologia , Defeitos dos Septos Cardíacos/metabolismo , Histonas/metabolismo , Mutação com Perda de Função , Camundongos , Células-Tronco Embrionárias Murinas/metabolismo , Proteína Meis1/genética , Miócitos Cardíacos/metabolismo , Proteínas com Domínio T/genética , Fatores de Transcrição/metabolismo
7.
Biomed Opt Express ; 8(2): 1257-1270, 2017 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-28271016

RESUMO

The high-throughput 3D visualisation of biological specimens is essential for studying diseases and developmental disorders. It requires imaging methods that deliver high-contrast, high-resolution volumetric information at short sample preparation and acquisition times. Here we show that X-ray phase-contrast tomography using a single grating can provide a powerful alternative to commonly employed techniques, such as high-resolution episcopic microscopy (HREM). We present the phase tomography of a mouse embryo in paraffin obtained with an X-ray single-grating interferometer at I13-2 Beamline at Diamond Light Source and discuss the results in comparison with HREM measurements. The excellent contrast and quantitative density information achieved non-destructively and without staining using a simple, robust setup make X-ray single-grating interferometry an optimum candidate for high-throughput imaging of biological specimens as an alternative for existing methods like HREM.

8.
PLoS One ; 11(8): e0161096, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27518902

RESUMO

Chromatin remodelling is essential for cardiac development. Interestingly, the role of histone chaperones has not been investigated in this regard. HIRA is a member of the HUCA (HIRA/UBN1/CABIN1/ASF1a) complex that deposits the variant histone H3.3 on chromatin independently of replication. Lack of HIRA has general effects on chromatin and gene expression dynamics in embryonic stem cells and mouse oocytes. Here we describe the conditional ablation of Hira in the cardiogenic mesoderm of mice. We observed surface oedema, ventricular and atrial septal defects and embryonic lethality. We identified dysregulation of a subset of cardiac genes, notably upregulation of troponins Tnni2 and Tnnt3, involved in cardiac contractility and decreased expression of Epha3, a gene necessary for the fusion of the muscular ventricular septum and the atrioventricular cushions. We found that HIRA binds GAGA rich DNA loci in the embryonic heart, and in particular a previously described enhancer of Tnni2/Tnnt3 (TTe) bound by the transcription factor NKX2.5. HIRA-dependent H3.3 enrichment was observed at the TTe in embryonic stem cells (ESC) differentiated toward cardiomyocytes in vitro. Thus, we show here that HIRA has locus-specific effects on gene expression and that histone chaperone activity is vital for normal heart development, impinging on pathways regulated by an established cardiac transcription factor.


Assuntos
Proteínas de Ciclo Celular/fisiologia , Regulação da Expressão Gênica , Coração/embriologia , Chaperonas de Histonas/fisiologia , Miócitos Cardíacos/citologia , Fatores de Transcrição/fisiologia , Troponina I/metabolismo , Troponina/metabolismo , Animais , Diferenciação Celular , Linhagem da Célula , Células Cultivadas , Embrião de Mamíferos/citologia , Embrião de Mamíferos/metabolismo , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Proteína Homeobox Nkx-2.5/genética , Proteína Homeobox Nkx-2.5/metabolismo , Camundongos , Camundongos Knockout , Miócitos Cardíacos/metabolismo , Troponina/genética , Troponina I/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...