Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biodivers Data J ; 11: e109439, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38078294

RESUMO

Tens of millions of images from biological collections have become available online over the last two decades. In parallel, there has been a dramatic increase in the capabilities of image analysis technologies, especially those involving machine learning and computer vision. While image analysis has become mainstream in consumer applications, it is still used only on an artisanal basis in the biological collections community, largely because the image corpora are dispersed. Yet, there is massive untapped potential for novel applications and research if images of collection objects could be made accessible in a single corpus. In this paper, we make the case for infrastructure that could support image analysis of collection objects. We show that such infrastructure is entirely feasible and well worth investing in.

3.
Biodivers Data J ; 10: e86089, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36761559

RESUMO

Scientific collections have been built by people. For hundreds of years, people have collected, studied, identified, preserved, documented and curated collection specimens. Understanding who those people are is of interest to historians, but much more can be made of these data by other stakeholders once they have been linked to the people's identities and their biographies. Knowing who people are helps us attribute work correctly, validate data and understand the scientific contribution of people and institutions. We can evaluate the work they have done, the interests they have, the places they have worked and what they have created from the specimens they have collected. The problem is that all we know about most of the people associated with collections are their names written on specimens. Disambiguating these people is the challenge that this paper addresses. Disambiguation of people often proves difficult in isolation and can result in staff or researchers independently trying to determine the identity of specific individuals over and over again. By sharing biographical data and building an open, collectively maintained dataset with shared knowledge, expertise and resources, it is possible to collectively deduce the identities of individuals, aggregate biographical information for each person, reduce duplication of effort and share the information locally and globally. The authors of this paper aspire to disambiguate all person names efficiently and fully in all their variations across the entirety of the biological sciences, starting with collections. Towards that vision, this paper has three key aims: to improve the linking, validation, enhancement and valorisation of person-related information within and between collections, databases and publications; to suggest good practice for identifying people involved in biological collections; and to promote coordination amongst all stakeholders, including individuals, natural history collections, institutions, learned societies, government agencies and data aggregators.

4.
PLoS One ; 16(12): e0261130, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34905557

RESUMO

Natural history collection data available digitally on the web have so far only made limited use of the potential of semantic links among themselves and with cross-disciplinary resources. In a pilot study, botanical collections of the Consortium of European Taxonomic Facilities (CETAF) have therefore begun to semantically annotate their collection data, starting with data on people, and to link them via a central index system. As a result, it is now possible to query data on collectors across different collections and automatically link them to a variety of external resources. The system is being continuously developed and is already in production use in an international collection portal.


Assuntos
Coleta de Dados , Bases de Dados Factuais , Armazenamento e Recuperação da Informação/métodos , Botânica , Biologia Computacional/métodos , Humanos
5.
Database (Oxford) ; 20192019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31819990

RESUMO

There are more than 1.2 billion biological specimens in the world's museums and herbaria. These objects are particularly important forms of biological sample and observation. They underpin biological taxonomy but the data they contain have many other uses in the biological and environmental sciences. Nevertheless, from their conception they are almost entirely documented on paper, either as labels attached to the specimens or in catalogues linked with catalogue numbers. In order to make the best use of these data and to improve the findability of these specimens, these data must be transcribed digitally and made to conform to standards, so that these data are also interoperable and reusable. Through various digitization projects, the authors have experimented with transcription by volunteers, expert technicians, scientists, commercial transcription services and automated systems. We have also been consumers of specimen data for taxonomical, biogeographical and ecological research. In this paper, we draw from our experiences to make specific recommendations to improve transcription data. The paper is split into two sections. We first address issues related to database implementation with relevance to data transcription, namely versioning, annotation, unknown and incomplete data and issues related to language. We then focus on particular data types that are relevant to biological collection specimens, namely nomenclature, dates, geography, collector numbers and uniquely identifying people. We make recommendations to standards organizations, software developers, data scientists and transcribers to improve these data with the specific aim of improving interoperability between collection datasets.


Assuntos
Curadoria de Dados , Bases de Dados Factuais/normas , Geografia , Museus , Padrões de Referência , Software , Terminologia como Assunto
6.
Biodivers Data J ; (7): e31817, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30833825

RESUMO

BACKGROUND: More and more herbaria are digitising their collections. Images of specimens are made available online to facilitate access to them and allow extraction of information from them. Transcription of the data written on specimens is critical for general discoverability and enables incorporation into large aggregated research datasets. Different methods, such as crowdsourcing and artificial intelligence, are being developed to optimise transcription, but herbarium specimens pose difficulties in data extraction for many reasons. NEW INFORMATION: To provide developers of transcription methods with a means of optimisation, we have compiled a benchmark dataset of 1,800 herbarium specimen images with corresponding transcribed data. These images originate from nine different collections and include specimens that reflect the multiple potential obstacles that transcription methods may encounter, such as differences in language, text format (printed or handwritten), specimen age and nomenclatural type status. We are making these specimens available with a Creative Commons Zero licence waiver and with permanent online storage of the data. By doing this, we are minimising the obstacles to the use of these images for transcription training. This benchmark dataset of images may also be used where a defined and documented set of herbarium specimens is needed, such as for the extraction of morphological traits, handwriting recognition and colour analysis of specimens.

7.
PLoS One ; 12(4): e0176104, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28419174

RESUMO

Recent research has suggested that increasing neighbourhood tree species diversity may mitigate the impact of pests or pathogens by supporting the activities of their natural enemies and/or reducing the density of available hosts. In this study, we attempted to assess these mechanisms in a multitrophic study system of young oak (Quercus), oak powdery mildew (PM, caused by Erysiphe spp.) and a mycophagous ladybird (Psyllobora vigintiduopunctata). We assessed ladybird mycophagy on oak PM in function of different neighbourhood tree species compositions. We also evaluated whether these species interactions were modulated by environmental conditions as suggested by the Stress Gradient Hypothesis. We adopted a complementary approach of a field experiment where we monitored oak saplings subjected to a reduced rainfall gradient in a young planted forest consisting of different tree species mixtures, as well as a lab experiment where we independently evaluated the effect of different watering treatments on PM infections and ladybird mycophagy. In the field experiment, we found effects of neighbourhood tree species richness on ladybird mycophagy becoming more positive as the target trees received less water. This effect was only found as weather conditions grew drier. In the lab experiment, we found a preference of ladybirds to graze on infected leaves from trees that received less water. We discuss potential mechanisms that might explain this preference, such as emissions of volatile leaf chemicals. Our results are in line with the expectations of the Natural Enemies Hypothesis and support the hypothesis that biodiversity effects become stronger with increased environmental stress.


Assuntos
Ascomicetos/fisiologia , Biodiversidade , Besouros/fisiologia , Herbivoria , Doenças das Plantas/microbiologia , Quercus/fisiologia , Estresse Fisiológico , Animais , Ecossistema , Quercus/microbiologia , Chuva , Árvores/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...