Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phytochemistry ; 220: 114014, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38354875

RESUMO

Past research has characterized the induction of plant defenses in response to chewing insect damage. However, little is known about plant responses to piercing-sucking insects that feed on plant cell-contents like thrips (Caliothrips phaseoli). In this study, we used NMR spectroscopy to measure metabolite changes in response to six days of thrips damage from two field-grown soybean cultivars (cv.), known for their different susceptibility to Caliothrips phaseoli. We observed that thrips damage reduces sucrose concentration in both cultivars, while pinitol, the most abundant leaf soluble carbohydrate, is induced in cv. Charata but not in cv. Williams. Thrips did not show preference for leaves where sucrose or pinitol were externally added, at tested concentration. In addition, we also noted that cv. Charata was less naturally colonized and contained higher levels of trigonelline, tyrosine as well as several compounds that we have not yet identified. We have established that preference-feeding clues are not dependent on the plants major soluble carbohydrates but may depend on other types of compounds or leaf physical characteristics.


Assuntos
Inositol/análogos & derivados , Tisanópteros , Animais , Tisanópteros/fisiologia , Glycine max , Insetos/fisiologia , Produtos Agrícolas , Sacarose
3.
Plant Sci ; 302: 110687, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33288005

RESUMO

In plants, the deoxy sugar l-rhamnose is widely present as rhamnose-containing polymers in cell walls and as part of the decoration of various specialized metabolites. Here, we review the current knowledge on the distribution of rhamnose, highlighting the differences between what is known in dicotyledoneuos compared to commelinid monocotyledoneous (grasses) plants. We discuss the biosynthesis and transport of UDP-rhamnose, as well as the transfer of rhamnose from UDP-rhamnose to various primary and specialized metabolites. This is carried out by rhamnosyltransferases, enzymes that can use a large variety of substrates. Some unique characteristics of rhamnose synthases, the multifunctional enzymes responsible for the conversion of UDP-glucose into UDP-rhamnose, are considered, particularly from the perspective of their ability to convert glucose present in flavonoids. Finally, we discuss how little is still known with regards to how plants rescue rhamnose from the many compounds to which it is linked, or how rhamnose is catabolized.


Assuntos
Plantas/metabolismo , Ramnose/biossíntese , Fenômenos Fisiológicos Vegetais , Ramnose/metabolismo , Ramnose/fisiologia
4.
Plant Sci ; 291: 110364, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31928683

RESUMO

Phenolic compounds are among the most diverse and widespread of specialized plant compounds and underly many important agronomic traits. Our comprehensive analysis of the maize genome unraveled new aspects of the genes involved in phenylpropanoid, monolignol, and flavonoid production in this important crop. Remarkably, just 19 genes accounted for 70 % of the overall mRNA accumulation of these genes across 95 tissues, indicating that these are the main contributors to the flux of phenolic metabolites. Eighty genes with intermediate to low expression play minor and more specialized roles. Remaining genes are likely undergoing loss of function or are expressed in limited cell types. Phylogenetic and expression analyses revealed which members of gene families governing metabolic entry and branch points exhibit duplication, subfunctionalization, or loss of function. Co-expression analysis applied to genes in sequential biosynthetic steps revealed that certain isoforms are highly co-expressed and are candidates for metabolic complexes that ensure metabolite delivery to correct cellular compartments. Co-expression of biosynthesis genes with transcription factors discovered connections that provided candidate components for regulatory modules governing this pathway. Our study provides a comprehensive analysis of maize phenylpropanoid related genes, identifies major pathway contributors, and novel candidate enzymatic and regulatory modules of the metabolic network.


Assuntos
Redes Reguladoras de Genes , Fenóis/metabolismo , Zea mays/genética , Genoma de Planta , Filogenia , Zea mays/metabolismo
5.
Plant Cell Environ ; 41(2): 383-394, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29194661

RESUMO

Solar UV-B radiation has been reported to enhance plant defenses against herbivore insects in many species. However, the mechanism and traits involved in the UV-B mediated increment of plant resistance are unknown in crops species, such as soybean. Here, we studied defense-related responses in undamaged and Anticarsia gemmatalis larvae-damaged leaves of two soybean cultivars grown under attenuated or full solar UV-B radiation. We determined changes in jasmonates, ethylene (ET), salicylic acid, trypsin protease inhibitor activity, flavonoids, and mRNA expression of genes related with defenses. ET emission induced by Anticarsia gemmatalis damage was synergistically increased in plants grown under solar UV-B radiation and was positively correlated with malonyl genistin concentration, trypsin proteinase inhibitor activity and expression of IFS2, and the pathogenesis protein PR2, while was negatively correlated with leaf consumption. The precursor of ET, aminocyclopropane-carboxylic acid, applied exogenously to soybean was sufficient to strongly induce leaf isoflavonoids. Our results showed that in field-grown soybean isoflavonoids were regulated by both herbivory and solar UV-B inducible ET, whereas flavonols were regulated by solar UV-B radiation only and not by herbivory or ET. Our study suggests that, although ET can modulate UV-B-mediated priming of inducible plant defenses, some plant defenses, such as isoflavonoids, are regulated by ET alone.


Assuntos
Etilenos/metabolismo , Glycine max/fisiologia , Mariposas , Reguladores de Crescimento de Plantas/fisiologia , Ácido Abscísico/metabolismo , Animais , Ciclopentanos/metabolismo , Herbivoria , Larva , Oxilipinas/metabolismo , Folhas de Planta/fisiologia , Ácido Salicílico/metabolismo , Glycine max/efeitos da radiação , Raios Ultravioleta
6.
Phytochemistry ; 141: 27-36, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28551080

RESUMO

Although it is well known that solar ultraviolet B (UV-B) radiation enhances plant defenses, there is less knowledge about traits that define insect resistance in field-grown soybean. Here we study the effects of solar UV-B radiation on: a) the induction of phenolic compounds and trypsin proteinase inhibitors (TPI) in soybean undamaged leaves or damaged by Anticarsia gemmatalis neonates during six days, and b) the survival and mass gain of A. gemmatalis larvae that fed on soybean foliage. Two soybean cultivars (cv.), Charata and Williams, were grown under plastic with different transmittance to solar UV-B radiation, which generated two treatments: ambient UV-B (UVB+) and reduced UV-B (UVB-) radiation. Solar UV-B radiation decreased survivorship by 30% and mass gain by 45% of larvae that fed on cv. Charata, but no effect was found in those larvae that fed on cv. Williams. TPI activity and malonyl genistin were induced by A. gemmatalis damage in both cultivars, but solar UV-B radiation and damage only synergistically increased the induction of these compounds in cv. Williams. Although TPI activity and genistein derivatives were induced by herbivory, these results did not explain the differences found in survivorship and mass gain of larvae that fed on cv. Charata. However, we found a positive association between lower larval performance and the presence of two quercetin triglycosides and a kaempferol triglycoside in foliage of cv. Charata, which were identified by HPLC-DAD/MS2. We conclude that exclusion of solar UV-B radiation reduce resistance to A. gemmatalis, due to a reduction in flavonol concentration in a cultivar that has low levels of genistein derivatives like cv. Charata.


Assuntos
Flavonóis/química , Glycine max/efeitos da radiação , Herbivoria , Mariposas , Folhas de Planta/química , Raios Ultravioleta , Animais , Genisteína/química , Larva , Fenóis/química , Folhas de Planta/efeitos da radiação , Glycine max/química , Luz Solar , Inibidores da Tripsina/química
7.
Plant Cell Environ ; 38(5): 920-8, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-24811566

RESUMO

Solar UV-B radiation (280-315 nm) has a significant influence on trophic relationships in natural and managed ecosystems, affecting plant-insect interactions. We explored the effects of ambient UV-B radiation on the levels of herbivory by stink bugs (Nezara viridula and Piezodorus guildinii) in field-grown soybean crops. The experiments included two levels of UV-B radiation (ambient and attenuated UV-B) and four soybean cultivars known to differ in their content of soluble leaf phenolics. Ambient UV-B radiation increased the accumulation of the isoflavonoids daidzin and genistin in the pods of all cultivars. Soybean crops grown under attenuated UV-B had higher numbers of unfilled pods and damaged seeds than crops grown under ambient UV-B radiation. Binary choice experiments with soybean branches demonstrated that stink bugs preferred branches of the attenuated UV-B treatment. We found a positive correlation between percentage of undamaged seeds and the contents of daidzin and genistin in pods. Our results suggest that constitutive and UV-B-induced isoflavonoids increase plant resistance to stink bugs under field conditions.


Assuntos
Genisteína/metabolismo , Glycine max/efeitos da radiação , Herbivoria , Heterópteros , Isoflavonas/metabolismo , Animais , Frutas/metabolismo , Glycine max/metabolismo , Raios Ultravioleta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...