Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 11421, 2023 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-37452133

RESUMO

The adoption of convolutional neural network (CNN) models in high-stake domains is hindered by their inability to meet society's demand for transparency in decision-making. So far, a growing number of methodologies have emerged for developing CNN models that are interpretable by design. However, such models are not capable of providing interpretations in accordance with human perception, while maintaining competent performance. In this paper, we tackle these challenges with a novel, general framework for instantiating inherently interpretable CNN models, named E pluribus unum interpretable CNN (EPU-CNN). An EPU-CNN model consists of CNN sub-networks, each of which receives a different representation of an input image expressing a perceptual feature, such as color or texture. The output of an EPU-CNN model consists of the classification prediction and its interpretation, in terms of relative contributions of perceptual features in different regions of the input image. EPU-CNN models have been extensively evaluated on various publicly available datasets, as well as a contributed benchmark dataset. Medical datasets are used to demonstrate the applicability of EPU-CNN for risk-sensitive decisions in medicine. The experimental results indicate that EPU-CNN models can achieve a comparable or better classification performance than other CNN architectures while providing humanly perceivable interpretations.

2.
Sensors (Basel) ; 20(8)2020 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-32331322

RESUMO

Every day, visually challenged people (VCP) face mobility restrictions and accessibility limitations. A short walk to a nearby destination, which for other individuals is taken for granted, becomes a challenge. To tackle this problem, we propose a novel visual perception system for outdoor navigation that can be evolved into an everyday visual aid for VCP. The proposed methodology is integrated in a wearable visual perception system (VPS). The proposed approach efficiently incorporates deep learning, object recognition models, along with an obstacle detection methodology based on human eye fixation prediction using Generative Adversarial Networks. An uncertainty-aware modeling of the obstacle risk assessment and spatial localization has been employed, following a fuzzy logic approach, for robust obstacle detection. The above combination can translate the position and the type of detected obstacles into descriptive linguistic expressions, allowing the users to easily understand their location in the environment and avoid them. The performance and capabilities of the proposed method are investigated in the context of safe navigation of VCP in outdoor environments of cultural interest through obstacle recognition and detection. Additionally, a comparison between the proposed system and relevant state-of-the-art systems for the safe navigation of VCP, focused on design and user-requirements satisfaction, is performed.


Assuntos
Percepção Visual/fisiologia , Algoritmos , Lógica Fuzzy , Humanos , Aprendizado de Máquina , Incerteza
3.
IEEE J Biomed Health Inform ; 23(6): 2211-2219, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-29994623

RESUMO

Robotic endoscopic systems offer a minimally invasive approach to the examination of internal body structures, and their application is rapidly extending to cover the increasing needs for accurate therapeutic interventions. In this context, it is essential for such systems to be able to perform measurements, such as measuring the distance traveled by a wireless capsule endoscope, so as to determine the location of a lesion in the gastrointestinal tract, or to measure the size of lesions for diagnostic purposes. In this paper, we investigate the feasibility of performing contactless measurements using a computer vision approach based on neural networks. The proposed system integrates a deep convolutional image registration approach and a multilayer feed-forward neural network into a novel architecture. The main advantage of this system, with respect to the state-of-the-art ones, is that it is more generic in the sense that it is 1) unconstrained by specific models, 2) more robust to nonrigid deformations, and 3) adaptable to most of the endoscopic systems and environment, while enabling measurements of enhanced accuracy. The performance of this system is evaluated under ex vivo conditions using a phantom experimental model and a robotically assisted test bench. The results obtained promise a wider applicability and impact in endoscopy in the era of big data.


Assuntos
Endoscopia por Cápsula/métodos , Aprendizado Profundo , Processamento de Imagem Assistida por Computador/métodos , Redes Neurais de Computação , Algoritmos , Desenho de Equipamento , Humanos , Imagens de Fantasmas , Robótica
4.
Endosc Int Open ; 6(2): E205-E210, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29399619

RESUMO

BACKGROUND AND STUDY AIMS: Capsule endoscopy (CE) is invaluable for minimally invasive endoscopy of the gastrointestinal tract; however, several technological limitations remain including lack of reliable lesion localization. We present an approach to 3D reconstruction and localization using visual information from 2D CE images. PATIENTS AND METHODS: Colored thumbtacks were secured in rows to the internal wall of a LifeLike bowel model. A PillCam SB3 was calibrated and navigated linearly through the lumen by a high-precision robotic arm. The motion estimation algorithm used data (light falling on the object, fraction of reflected light and surface geometry) from 2D CE images in the video sequence to achieve 3D reconstruction of the bowel model at various frames. The ORB-SLAM technique was used for 3D reconstruction and CE localization within the reconstructed model. This algorithm compared pairs of points between images for reconstruction and localization. RESULTS: As the capsule moved through the model bowel 42 to 66 video frames were obtained per pass. Mean absolute error in the estimated distance travelled by the CE was 4.1 ±â€Š3.9 cm. Our algorithm was able to reconstruct the cylindrical shape of the model bowel with details of the attached thumbtacks. ORB-SLAM successfully reconstructed the bowel wall from simultaneous frames of the CE video. The "track" in the reconstruction corresponded well with the linear forwards-backwards movement of the capsule through the model lumen. CONCLUSION: The reconstruction methods, detailed above, were able to achieve good quality reconstruction of the bowel model and localization of the capsule trajectory using information from the CE video and images alone.

5.
Comput Biol Med ; 89: 429-440, 2017 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-28886480

RESUMO

Wireless capsule endoscopy (WCE) is performed with a miniature swallowable endoscope enabling the visualization of the whole gastrointestinal (GI) tract. One of the most challenging problems in WCE is the localization of the capsule endoscope (CE) within the GI lumen. Contemporary, radiation-free localization approaches are mainly based on the use of external sensors and transit time estimation techniques, with practically low localization accuracy. Latest advances for the solution of this problem include localization approaches based solely on visual information from the CE camera. In this paper we present a novel visual localization approach based on an intelligent, artificial neural network, architecture which implements a generic visual odometry (VO) framework capable of estimating the motion of the CE in physical units. Unlike the conventional, geometric, VO approaches, the proposed one is adaptive to the geometric model of the CE used; therefore, it does not require any prior knowledge about and its intrinsic parameters. Furthermore, it exploits color as a cue to increase localization accuracy and robustness. Experiments were performed using a robotic-assisted setup providing ground truth information about the actual location of the CE. The lowest average localization error achieved is 2.70 ± 1.62 cm, which is significantly lower than the error obtained with the geometric approach. This result constitutes a promising step towards the in-vivo application of VO, which will open new horizons for accurate local treatment, including drug infusion and surgical interventions.


Assuntos
Cápsulas Endoscópicas , Endoscopia por Cápsula/métodos , Processamento de Imagem Assistida por Computador , Redes Neurais de Computação , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...