Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Methods Mol Biol ; 2776: 89-106, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38502499

RESUMO

Plastids are semi-autonomous organelles like mitochondria and derive from a cyanobacterial ancestor that was engulfed by a host cell. During evolution, they have recruited proteins originating from the nuclear genome, and only parts of their ancestral metabolic properties were conserved and optimized to limit functional redundancy with other cell compartments. Furthermore, large disparities in metabolic functions exist among various types of plastids, and the characterization of their various metabolic properties is far from being accomplished. In this review, we provide an overview of the main functions, known to be achieved by plastids or shared by plastids and other compartments of the cell. In short, plastids appear at the heart of all main plant functions.


Assuntos
Mitocôndrias , Plastídeos , Plastídeos/metabolismo , Mitocôndrias/genética
2.
Methods Mol Biol ; 2776: 289-302, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38502512

RESUMO

Excluding the few dozen proteins encoded by the chloroplast and mitochondrial genomes, the majority of plant cell proteins are synthesized by cytosolic ribosomes. Most of these nuclear-encoded proteins are then targeted to specific cell compartments thanks to localization signals present in their amino acid sequence. These signals can be specific amino acid sequences known as transit peptides, or post-translational modifications, ability to interact with specific proteins or other more complex regulatory processes. Furthermore, in eukaryotic cells, protein synthesis can be regulated so that certain proteins are synthesized close to their destination site, thus enabling local protein synthesis in specific compartments of the cell. Previous studies have revealed that such locally translating cytosolic ribosomes are present in the vicinity of mitochondria and emerging views suggest that localized translation near chloroplasts could also occur. However, in higher plants, very little information is available on molecular mechanisms controlling these processes and there is a need to characterize cytosolic ribosomes associated with organelles membranes. To this goal, this protocol describes the purification of higher plant chloroplast and mitochondria and the organelle-associated cytosolic ribosomes.


Assuntos
Cloroplastos , Ribossomos , Citosol/metabolismo , Cloroplastos/metabolismo , Ribossomos/metabolismo , Plantas/metabolismo , Proteínas de Plantas/metabolismo , Mitocôndrias/metabolismo
3.
Proc Natl Acad Sci U S A ; 119(27): e2001290119, 2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35759655

RESUMO

The organization of the genome into transcriptionally active and inactive chromatin domains requires well-delineated chromatin boundaries and insulator functions in order to maintain the identity of adjacent genomic loci with antagonistic chromatin marks and functionality. In plants that lack known chromatin insulators, the mechanisms that prevent heterochromatin spreading into euchromatin remain to be identified. Here, we show that DNA Topoisomerase VI participates in a chromatin boundary function that safeguards the expression of genes in euchromatin islands within silenced heterochromatin regions. While some transposable elements are reactivated in mutants of the Topoisomerase VI complex, genes insulated in euchromatin islands within heterochromatic regions of the Arabidopsis thaliana genome are specifically down-regulated. H3K9me2 levels consistently increase at euchromatin island loci and decrease at some transposable element loci. We further show that Topoisomerase VI physically interacts with S-adenosylmethionine synthase methionine adenosyl transferase 3 (MAT3), which is required for H3K9me2. A Topoisomerase VI defect affects MAT3 occupancy on heterochromatic elements and its exclusion from euchromatic islands, thereby providing a possible mechanistic explanation to the essential role of Topoisomerase VI in the delimitation of chromatin domains.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , DNA Topoisomerases Tipo II , Eucromatina , Heterocromatina , Histonas , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Cromatina/genética , DNA Topoisomerases Tipo II/genética , DNA Topoisomerases Tipo II/metabolismo , Elementos de DNA Transponíveis , Eucromatina/genética , Heterocromatina/genética , Histonas/genética , Histonas/metabolismo
4.
New Phytol ; 209(4): 1417-27, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26529678

RESUMO

Diatoms are widespread in aquatic ecosystems where they may be limited by the supply of inorganic carbon. Their carbon dioxide-concentrating mechanisms (CCMs) involving transporters and carbonic anhydrases (CAs) are well known, but the contribution of a biochemical CCM involving C4 metabolism is contentious. The CCM(s) present in the marine-centric diatom, Thalassiosira pseudonana, were studied in cells exposed to high or low concentrations of CO2 , using a range of approaches. At low CO2 , cells possessed a CCM based on active uptake of CO2 (70% contribution) and bicarbonate, while at high CO2 , cells were restricted to CO2 . CA was highly and rapidly activated on transfer to low CO2 and played a key role because inhibition of external CA produced uptake kinetics similar to cells grown at high CO2 . The activities of phosphoenolpyruvate (PEP) carboxylase (PEPC) and the PEP-regenerating enzyme, pyruvate phosphate dikinase (PPDK), were lower in cells grown at low than at high CO2 . The ratios of PEPC and PPDK to ribulose bisphosphate carboxylase were substantially lower than 1, even at low CO2 . Our data suggest that the kinetic properties of this species results from a biophysical CCM and not from C4 type metabolism.


Assuntos
Organismos Aquáticos/metabolismo , Dióxido de Carbono/metabolismo , Diatomáceas/metabolismo , Acetazolamida/farmacologia , Organismos Aquáticos/efeitos dos fármacos , Organismos Aquáticos/crescimento & desenvolvimento , Bicarbonatos/farmacologia , Dióxido de Carbono/farmacologia , Anidrases Carbônicas/metabolismo , Diatomáceas/efeitos dos fármacos , Diatomáceas/enzimologia , Diatomáceas/crescimento & desenvolvimento , Ativação Enzimática/efeitos dos fármacos , Concentração de Íons de Hidrogênio , Cinética , Fotossíntese/efeitos dos fármacos , Ribulose-Bifosfato Carboxilase/metabolismo , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...