Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Dev Biol ; 512: 44-56, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38729406

RESUMO

Impaired formation of the biliary network can lead to congenital cholestatic liver diseases; however, the genes responsible for proper biliary system formation and maintenance have not been fully identified. Combining computational network structure analysis algorithms with a zebrafish forward genetic screen, we identified 24 new zebrafish mutants that display impaired intrahepatic biliary network formation. Complementation tests suggested these 24 mutations affect 24 different genes. We applied unsupervised clustering algorithms to unbiasedly classify the recovered mutants into three classes. Further computational analysis revealed that each of the recovered mutations in these three classes has a unique phenotype on node-subtype composition and distribution within the intrahepatic biliary network. In addition, we found most of the recovered mutations are viable. In those mutant fish, which are already good animal models to study chronic cholestatic liver diseases, the biliary network phenotypes persist into adulthood. Altogether, this study provides unique genetic and computational toolsets that advance our understanding of the molecular pathways leading to biliary system malformation and cholestatic liver diseases.

2.
Cancers (Basel) ; 12(2)2020 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-32093152

RESUMO

Hepatocellular carcinoma (HCC) is a complex biological process and is often diagnosed at advanced stages with no effective treatment options. With advances in tumor biology and molecular genetic profiling, several different signaling pathways and molecular mechanisms have been identified as responsible for initiating and promoting HCC. Targeting these critical pathways, which include the receptor tyrosine kinase pathways, the Ras mitogen-activated protein kinase (Ras/Raf/MAPK), the phosphatidylinositol 3-kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR), the Wnt/ß-catenin signaling pathway, the ubiquitin/proteasome degradation and the hedgehog signaling pathway has led to the identification of novel therapeutics for HCC treatment. In this review, we elaborated on our current understanding of the signaling pathways involved in the development and initiation of HCC and anticipate the potential targets for therapeutic drug development.

3.
Hepatology ; 71(2): 549-568, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31215069

RESUMO

Cancer cells undergo metabolic adaptation to sustain uncontrolled proliferation. Aerobic glycolysis and glutaminolysis are two of the most essential characteristics of cancer metabolic reprogramming. Hyperactivated phosphoinositide 3-kinase (PI3K)/Akt serine/threonine kinase (Akt) and mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) signaling pathways play central roles in cancer cell metabolic adaptation given that their downstream effectors, such as Akt and c-Myc, control most of the glycolytic and glutaminolysis genes. Here, we report that the cytosolic flavoprotein, NAD(P)H quinone dehydrogenase 1 (Nqo1), is strongly overexpressed in mouse and human hepatocellular carcinoma (HCC). Knockdown of Nqo1 enhanced activity of the serine/threonine phosphatase, protein phosphatase 2A, which operates at the intersection of the PI3K/Akt and MAPK/ERK pathways and dephosphorylates and inactivates pyruvate dehydrogenase kinase 1, Akt, Raf, mitogen-activated protein kinase kinase, and ERK1/2. Nqo1 ablation also induced the expression of phosphatase and tensin homolog, a dual protein/lipid phosphatase that blocks PI3K/Akt signaling, through the ERK/cAMP-responsive element-binding protein/c-Jun pathway. Together, Nqo1 ablation triggered simultaneous inhibition of the PI3K/Akt and MAPK/ERK pathways, suppressed the expression of glycolysis and glutaminolysis genes and blocked metabolic adaptation in liver cancer cells. Conversely, Nqo1 overexpression caused hyperactivation of the PI3K/Akt and MAPK/ERK pathways and promoted metabolic adaptation. Conclusion: In conclusion, Nqo1 functions as an upstream activator of both the PI3K/Akt and MAPK/ERK pathways in liver cancer cells, and Nqo1 ablation blocked metabolic adaptation and inhibited liver cancer cell proliferation and HCC growth in mice. Therefore, our results suggest that Nqo1 may function as a therapeutic target to inhibit liver cancer cell proliferation and inhibit HCC.


Assuntos
Carcinoma Hepatocelular/enzimologia , MAP Quinases Reguladas por Sinal Extracelular/fisiologia , Neoplasias Hepáticas/enzimologia , NAD(P)H Desidrogenase (Quinona)/fisiologia , Fosfatidilinositol 3-Quinases/fisiologia , Proteínas Proto-Oncogênicas c-akt/fisiologia , Animais , Carcinoma Hepatocelular/metabolismo , Humanos , Neoplasias Hepáticas/metabolismo , Masculino , Camundongos , Transdução de Sinais
4.
FASEB J ; 32(9): 4727-4743, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29570397

RESUMO

Cachexia is a complex tissue-wasting syndrome characterized by inflammation, hypermetabolism, increased energy expenditure, and anorexia. Browning of white adipose tissue (WAT) is one of the significant factors that contribute to energy wasting in cachexia. By utilizing a cell implantation model, we demonstrate here that the lipid mobilizing factor zinc-α2-glycoprotein (ZAG) induces WAT browning in mice. Increased circulating levels of ZAG not only induced lipolysis in adipose tissues but also caused robust browning in WAT. Stimulating WAT progenitors with ZAG recombinant protein or expression of ZAG in mouse embryonic fibroblasts (MEFs) strongly enhanced brown-like differentiation. At the molecular level, ZAG stimulated peroxisome proliferator-activated receptor γ (PPARγ) and early B cell factor 2 expression and promoted their recruitment to the PR/SET domain 16 (Prdm16) promoter, leading to enhanced expression of Prdm16, which determines brown cell fate. In brown adipose tissue, ZAG stimulated the expression of PPARγ and PPARγ coactivator 1α and promoted recruitment of PPARγ to the uncoupling protein 1 (Ucp1) promoter, leading to increased expression of Ucp1. Overall, our results reveal a novel function of ZAG in WAT browning and highlight the targeting of ZAG as a potential therapeutic application in humans with cachexia.-Elattar, S., Dimri, M., Satyanarayana, A. The tumor secretory factor ZAG promotes white adipose tissue browning and energy wasting.


Assuntos
Tecido Adiposo Marrom/metabolismo , Caquexia/metabolismo , Metabolismo Energético/fisiologia , Proteínas de Plasma Seminal/metabolismo , Termogênese/fisiologia , Tecido Adiposo Branco/metabolismo , Animais , Transporte Biológico/fisiologia , Camundongos , Neoplasias/metabolismo , Fatores de Transcrição/metabolismo , Proteína Desacopladora 1/metabolismo , Glicoproteína Zn-alfa-2
5.
Development ; 144(14): 2595-2605, 2017 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-28720653

RESUMO

The intrahepatic biliary network is a highly branched three-dimensional network lined by biliary epithelial cells, but how its branching patterns are precisely established is not clear. We designed a new computer-based algorithm that quantitatively computes the structural differences of the three-dimensional networks. Utilizing the algorithm, we showed that inhibition of Cyclin-dependent kinase 5 (Cdk5) led to reduced branching in the intrahepatic biliary network in zebrafish. Further, we identified a previously unappreciated downstream kinase cascade regulated by Cdk5. Pharmacological manipulations of this downstream kinase cascade produced a crowded branching defect in the intrahepatic biliary network and influenced actin dynamics in biliary epithelial cells. We generated larvae carrying a mutation in cdk5 regulatory subunit 1a (cdk5r1a), an essential activator of Cdk5. cdk5r1a mutant larvae show similar branching defects as those observed in Cdk5 inhibitor-treated larvae. A small-molecule compound that interferes with the downstream kinase cascade rescued the mutant phenotype. These results provide new insights into branching morphogenesis of the intrahepatic biliary network.


Assuntos
Ductos Biliares Intra-Hepáticos/enzimologia , Ductos Biliares Intra-Hepáticos/crescimento & desenvolvimento , Quinase 5 Dependente de Ciclina/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/crescimento & desenvolvimento , Peixe-Zebra/metabolismo , Fatores de Despolimerização de Actina/metabolismo , Algoritmos , Animais , Animais Geneticamente Modificados , Simulação por Computador , Quinase 5 Dependente de Ciclina/antagonistas & inibidores , Quinase 5 Dependente de Ciclina/genética , Técnicas de Inativação de Genes , Imageamento Tridimensional , Larva/crescimento & desenvolvimento , Larva/metabolismo , Quinases Lim/metabolismo , Modelos Anatômicos , Morfogênese/efeitos dos fármacos , Morfogênese/genética , Morfogênese/fisiologia , Mutação , Inibidores de Proteínas Quinases/farmacologia , Transdução de Sinais , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/antagonistas & inibidores , Proteínas de Peixe-Zebra/genética , Quinases Ativadas por p21/metabolismo
6.
Curr Comput Aided Drug Des ; 11(3): 222-36, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26265253

RESUMO

Ligand bound beta 2 adrenergic receptor (ß2AR) crystal structures are in use for screening of compound libraries for identifying inducers and blockers. However, in case of G protein coupled receptors (GPCR), docking and binding energy (BE) calculations are not enough to discriminate agonist and antagonists. Absence of a reliable model for discriminating ß2AR antagonist is still a major hurdle. Docking of known antagonists and agonists into activated and ground state ß2AR revealed several key intermolecular interactions and H-bonding patterns, which in combination, emerged as a model for prediction of antagonists. Present study identifies an alternative binding orientation, within the binding pocket, for blockers and a minimum grid size to lessen the false positive predictions. Cluster analysis revealed structural variability among the antagonists and a conserved pattern in case of agonists. A combination of docking and structure activity relationship (SAR) model reliably discriminated antagonists. Based on key intermolecular interactions, a set of agonists and antagonists useful to SAR, quantitative structure activity relationship (QSAR) and pharmacophore modeling, has also been proposed for identifying antagonists.


Assuntos
Antagonistas de Receptores Adrenérgicos beta 2/farmacologia , Descoberta de Drogas/métodos , Ligantes , Modelos Moleculares , Relação Quantitativa Estrutura-Atividade , Humanos , Simulação de Acoplamento Molecular/métodos , Ligação Proteica/efeitos dos fármacos
7.
Tokai J Exp Clin Med ; 40(1): 8-15, 2015 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-25843444

RESUMO

Drug repositioning is an approach of significant translatability, and the present study was undertaken to screen a collection of FDA approved small-molecule clinical compounds for identification of novel radioprotective agents. Screening of JHCCL (Johns Hopkins Clinical Compound Library), a collection of 1,400 FDA approved small molecules, lead to identification of prilocaine hydrochloride, a local anesthetic used widely during dental procedures, as a potential radioprotector. Prilocaine, at a concentration of 20 µM, protected zebrafish from radiation induced (20 Gy) pericardial edema (PE), microphthalmia and rendered 60 % survival advantage over radiation exposed controls. While 40 % survival advantage over radiation exposed controls was achieved with 10 µM prilocaine. Prilocaine, in a dose-dependent manner, scavenged, radiation-induced hydroxyl radicals and maximally (43 %) at the highest concentration (1 mM) tried in this study. However, prilocaine exerted a mild superoxide anion scavenging potential (around 5 %) at all the concentrations used within this study. Prilocaine, at 20 µM concentration, significantly increased erythropoiesis, a marker for HSC function, in caudal hematopoietic tissue (CHT) in wild type and anemic zebrafish embryos (1.48 and 0.85 folds respectively) when compared to untreated (1) and phenylhydrazine (PHZ) (0.41 fold) treated control groups respectively. These results suggest that prilocaine is a radioprotective agent and free radical scavenging and HSC expanding potential seems to be contributing towards its radioprotective action.


Assuntos
Anestésicos Locais/farmacologia , Embrião não Mamífero/efeitos da radiação , Eritropoese/efeitos dos fármacos , Sequestradores de Radicais Livres , Células-Tronco Hematopoéticas/efeitos dos fármacos , Prilocaína/farmacologia , Lesões Experimentais por Radiação/prevenção & controle , Protetores contra Radiação , Peixe-Zebra/embriologia , Peixe-Zebra/metabolismo , Animais , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos , Reposicionamento de Medicamentos , Células-Tronco Hematopoéticas/citologia , Peso Molecular
8.
Zebrafish ; 12(1): 33-47, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25517940

RESUMO

The Johns Hopkins Clinical Compound Library (JHCCL), a collection of Food and Drug Administration (FDA)-approved small molecules (1400), was screened in silico for identification of novel ß2AR blockers and tested for hematopoietic stem cell (HSC) expansion and radioprotection in zebrafish embryos. Docking studies, followed by the capacity to hasten erythropoiesis, identified todralazine (Binding energy, -8.4 kcal/mol) as a potential HSC-modulating agent. Todralazine (5 µM) significantly increased erythropoiesis in caudal hematopoietic tissue (CHT) in wild-type and anemic zebrafish embryos (2.33- and 1.44-folds, respectively) when compared with untreated and anemic control groups. Todralazine (5 µM) treatment also led to an increased number of erythroid progenitors, as revealed from the increased expression of erythroid progenitor-specific genes in the CHT region. Consistent with these effects, zebrafish embryos, Tg(cmyb:gfp), treated with 5 µM todralazine from 24 to 36 hours post fertilization (hpf) showed increased (approximately two-folds) number of HSCs at the aorta-gonad-mesonephros region (AGM). Similarly, expression of HSC marker genes, runx1 (3.3-folds), and cMyb (1.41-folds) also increased in case of todralazine-treated embryos, further supporting its HSC expansion potential. Metoprolol, a known beta blocker, also induced HSC expansion (1.36- and 1.48-fold increase in runx1 and cMyb, respectively). Todralazine (5 µM) when added 30 min before 20 Gy gamma radiation, protected zebrafish from radiation-induced organ toxicity, apoptosis, and improved survival (80% survival advantage over 6 days). The 2-deoxyribose degradation test further suggested hydroxyl (OH) radical scavenging potential of todralazine, and the same is recapitulated in vivo. These results suggest that todralazine is a potential HSC expanding agent, which might be acting along with important functions, such as antioxidant and free radical scavenging, in manifesting radioprotection.


Assuntos
Antagonistas de Receptores Adrenérgicos beta 2/farmacologia , Células-Tronco Hematopoéticas/efeitos dos fármacos , Radiação Ionizante , Todralazina/farmacologia , Peixe-Zebra/metabolismo , Animais , Embrião não Mamífero/efeitos dos fármacos
9.
Curr Comput Aided Drug Des ; 9(1): 35-45, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23905928

RESUMO

Cyclooxygenase-2 (COX-2) is well established for its role in inflammation, cancer and has also been reported to play a significant role in radiation induced inflammation and bystander effect. It has already been reported to have a role in protection against radiation induced damage, suggesting it to be an important target for identifying novel radiation countermeasure agents. Present study aims at identifying novel small molecules from pharmacopeia using COX-2 as target in silico. Systematic search of the molecules that are reported to exhibit radiation protection revealed that around 30% (40 in 130) of them have a role in inflammation and a small percentage of these molecules (20%; 8 in 40) are reported to act as non-steroidal anti-inflammatory drugs (NSAIDS). Docking studies further clarified that antiinflammatory compounds exhibited higher binding energy (BE). Out of 15 top hits, 14 molecules are reported to have anti-inflammatory property, suggesting the significant role of COX-2 in radiation protection. Further, Johns Hopkins Clinical Compound Library (JHCCL), a collection of small molecule clinical compounds, was screened virtually for COX-2 inhibition by docking approach. Docking of around 1400 small molecules against COX-2, leads to identification of a number of previously unreported molecules, which are likely to act as radioprotectors.


Assuntos
Inibidores de Ciclo-Oxigenase 2/química , Inibidores de Ciclo-Oxigenase 2/farmacologia , Ciclo-Oxigenase 2/metabolismo , Protetores contra Radiação/química , Protetores contra Radiação/farmacologia , Animais , Anti-Inflamatórios não Esteroides/química , Anti-Inflamatórios não Esteroides/farmacologia , Simulação por Computador , Desenho Assistido por Computador , Humanos , Camundongos , Simulação de Acoplamento Molecular , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...