Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Cent Sci ; 10(3): 569-578, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38559291

RESUMO

Eliminating the use of critical metals in cathode materials can accelerate global adoption of rechargeable lithium-ion batteries. Organic cathode materials, derived entirely from earth-abundant elements, are in principle ideal alternatives but have not yet challenged inorganic cathodes due to poor conductivity, low practical storage capacity, or poor cyclability. Here, we describe a layered organic electrode material whose high electrical conductivity, high storage capacity, and complete insolubility enable reversible intercalation of Li+ ions, allowing it to compete at the electrode level, in all relevant metrics, with inorganic-based lithium-ion battery cathodes. Our optimized cathode stores 306 mAh g-1cathode, delivers an energy density of 765 Wh kg-1cathode, higher than most cobalt-based cathodes, and can charge-discharge in as little as 6 min. These results demonstrate the operational competitiveness of sustainable organic electrode materials in practical batteries.

2.
J Am Chem Soc ; 145(21): 11482-11487, 2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37201196

RESUMO

We investigated the water H-bond network and its dynamics in Ni2Cl2BTDD, a prototypical MOF for atmospheric water harvesting, using linear and ultrafast IR spectroscopy. Utilizing isotopic labeling and infrared spectroscopy, we found that water forms an extensive H-bonding network in Ni2Cl2BTDD. Further investigation with ultrafast spectroscopy revealed that water can reorient in a confined cone up to ∼50° within 1.3 ps. This large angle reorientation indicates H-bond rearrangement, similar to bulk water. Thus, although the water H-bond network is confined in Ni2Cl2BTDD, different from other confined systems, H-bond rearrangement is not hindered. The picosecond H-bond rearrangement in Ni2Cl2BTDD corroborates its reversibility with minimal hysteresis in water sorption.

3.
Chem Rev ; 123(9): 6197-6232, 2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-36802581

RESUMO

The presence of site-isolated and well-defined metal sites has enabled the use of metal-organic frameworks (MOFs) as catalysts that can be rationally modulated. Because MOFs can be addressed and manipulated through molecular synthetic pathways, they are chemically similar to molecular catalysts. They are, nevertheless, solid-state materials and therefore can be thought of as privileged solid molecular catalysts that excel in applications involving gas-phase reactions. This contrasts with homogeneous catalysts, which are overwhelmingly used in the solution phase. Herein, we review theories dictating gas phase reactivity within porous solids and discuss key catalytic gas-solid reactions. We further treat theoretical aspects of diffusion within confined pores, the enrichment of adsorbates, the types of solvation spheres that a MOF might impart on adsorbates, definitions of acidity/basicity in the absence of solvent, the stabilization of reactive intermediates, and the generation and characterization of defect sites. The key catalytic reactions we discuss broadly include reductive reactions (olefin hydrogenation, semihydrogenation, and selective catalytic reduction), oxidative reactions (oxygenation of hydrocarbons, oxidative dehydrogenation, and carbon monoxide oxidation), and C-C bond forming reactions (olefin dimerization/polymerization, isomerization, and carbonylation reactions).

4.
Angew Chem Int Ed Engl ; 62(13): e202217534, 2023 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-36645673

RESUMO

Phosphane, PH3 -a highly pyrophoric and toxic gas-is frequently contaminated with H2 and P2 H4 , which makes its handling even more dangerous. The inexpensive metal-organic framework (MOF) magnesium formate, α-[Mg(O2 CH)2 ], can adsorb up to 10 wt % of PH3 . The PH3 -loaded MOF, PH3 @α-[Mg(O2 CH)2 ], is a non-pyrophoric, recoverable material that even allows brief handling in air, thereby minimizing the hazards associated with the handling and transport of phosphane. α-[Mg(O2 CH)2 ] further plays a critical role in purifying PH3 from H2 and P2 H4 : at 25 °C, H2 passes through the MOF channels without adsorption, whereas PH3 adsorbs readily and only slowly desorbs under a flow of inert gas (complete desorption time≈6 h). Diphosphane, P2 H4 , is strongly adsorbed and trapped within the MOF for at least 4 months. P2 H4 @α-[Mg(O2 CH)2 ] itself is not pyrophoric and is air- and light-stable at room temperature.

5.
ACS Cent Sci ; 8(7): 975-982, 2022 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-35912352

RESUMO

Molecular materials must deliver high current densities to be competitive with traditional heterogeneous catalysts. Despite their high density of active sites, it has been unclear why the reported O2 reduction reaction (ORR) activity of molecularly defined conductive metal-organic frameworks (MOFs) have been very low: ca. -1 mA cm-2. Here, we use a combination of gas diffusion electrolyses and nanoelectrochemical measurements to lift multiscale O2 transport limitations and show that the intrinsic electrocatalytic ORR activity of a model 2D conductive MOF, Ni3(HITP)2, has been underestimated by at least 3 orders of magnitude. When it is supported on a gas diffusion electrode (GDE), Ni3(HITP)2 can deliver ORR activities >-150 mA cm-2 and gravimetric H2O2 electrosynthesis rates exceeding or on par with those of prior heterogeneous electrocatalysts. Enforcing the fastest accessible mass transport rates using scanning electrochemical cell microscopy revealed that Ni3(HITP)2 is capable of ORR current densities exceeding -1200 mA cm-2 and at least another 130-fold higher ORR mass activity than has been observed in GDEs. Our results directly implicate precise control over multiscale mass transport to achieve high-current-density electrocatalysis in molecular materials.

6.
Inorg Chem ; 61(17): 6480-6487, 2022 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-35446568

RESUMO

Metal-organic frameworks (MOFs) provide exceptional chemical tunability and have recently been demonstrated to exhibit electrical conductivity and related functional electronic properties. The kagomé lattice is a fruitful source of novel physical states of matter, including the quantum spin liquid (in insulators) and Dirac fermions (in metals). Small-bandgap kagomé materials have the potential to bridge quantum spin liquid states and exhibit phenomena such as superconductivity but remain exceptionally rare. Here we report a structural, thermodynamic, and transport study of the two-dimensional kagomé metal-organic frameworks Ni3(HIB)2 and Cu3(HIB)2 (HIB = hexaiminobenzene). Magnetization measurements yield Curie constants of 0.989 emu K (mol Ni)-1 Oe-1 and 0.371 emu K (mol Cu)-1 Oe-1, respectively, close to the values expected for ideal S = 1 Ni2+ and S = 1/2 Cu2+. Weiss temperatures of -10.6 and -14.3 K indicate net weak mean field antiferromagnetic interactions between ions. Electrical transport measurements reveal that both materials are semiconducting, with gaps (Eg) of 22.2 and 103 meV, respectively. Specific heat measurements reveal a large T-linear contribution γ of 148(4) mJ mol-fu-1 K-2 in Ni3(HIB)2 with only a gradual upturn below ∼5 K and no evidence of a phase transition to an ordered state down to 0.1 K. Cu3(HIB)2 also lacks evidence of a phase transition above 0.1 K, with a substantial, field-dependent, magnetic contribution below ∼5 K. Despite them being superficially in agreement with the expectations of magnetic frustration and spin liquid physics, we ascribe these observations to the stacking faults found from a detailed analysis of synchrotron X-ray diffraction data. At the same time, our results demonstrate that these MOFs exhibit localized magnetism with simultaneous proximity to a metallic state, thus opening up opportunities to explore the connection between the insulating and metallic ground states of kagomé materials in a highly tunable chemical platform.

7.
J Am Chem Soc ; 143(40): 16343-16347, 2021 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-34596390

RESUMO

CO, ethylene, and H2 demonstrate divergent adsorption enthalpies upon interaction with a series of anion-exchanged Ni2X2BTDD materials (X = OH, F, Cl, Br; H2BTDD = bis(1H-1,2,3-triazolo[4,5-b][4',5'-i])dibenzo[1,4]dioxin)). The dissimilar responses of these conventional π-acceptor gaseous ligands are in contrast with the typical behavior that may be expected for gas sorption in metal-organic frameworks (MOFs), which generally follows similar periodic trends for a given set of systematic changes to the host MOF structure. A combination of computational and spectroscopic data reveals that the divergent behavior, especially between CO and ethylene, stems from a predominantly σ-donor interaction between the former and Ni2+ and a π-acceptor interaction for the latter. These findings will facilitate further deliberate postsynthetic modifications of MOFs with open metal sites to control the equilibrium selectivity of gas sorption.

8.
Inorg Chem ; 60(16): 11764-11774, 2021 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-34251817

RESUMO

We report synthetic strategies for installing platinum group metals (PGMs: Pd, Rh, Ir, and Pt) on a scorpionate-derived linker (TpmC*) within a metal-organic framework (MOF), both by room-temperature postsynthetic metalation and by direct solvothermal synthesis, with a wide range of metal loadings relevant for fundamental studies and catalysis. In-depth studies for the palladium adduct Pd(II)@Zr-TpmC* by density-functional-theory-assisted extended X-ray absorption fine structure spectroscopy reveals that the rigid MOF lattice enforces a close Pd(II)-Napical interaction between the bidentate palladium complex and the third uncoordinated pyrazole arm of the TpmC* ligand (Pd-Napical = 2.501 ± 0.067 Å), an interaction that is wholly avoided in molecular palladium scorpionates.

9.
Nat Commun ; 11(1): 6259, 2020 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-33288766

RESUMO

Three-dimensional metal-organic frameworks (MOFs) are cutting-edge materials in the adsorptive removal of trace gases due to the availability of abundant pores with specific chemistry. However, the development of ideal adsorbents combining high adsorption capacity with high selectivity and stability remains challenging. Here we demonstrate a strategy to design adsorbents that utilizes the tunability of interlayer and intralayer space of two-dimensional fluorinated MOFs for capturing acetylene from ethylene. Validated by X-ray diffraction and modeling, a systematic variation of linker atom oxidation state enables fine regulation of layer stacking pattern and linker conformation, which affords a strong interlayer trapping of molecules along with cooperative intralayer binding. The resultant robust materials (ZUL-100 and ZUL-200) exhibit benchmark capacity in the pressure range of 0.001-0.05 bar with high selectivity. Their efficiency in acetylene/ethylene separation is confirmed by breakthrough experiments, giving excellent ethylene productivities (121 mmol/g from 1/99 mixture, 99.9999%), even when cycled under moist conditions.

10.
Inorg Chem ; 58(19): 13221-13228, 2019 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-31553170

RESUMO

Partial substitution of ZnII by MnII in Zn5(OAc)4(5,5'-bibenzo[d][1,2,3]triazole)3 (CFA-1) results in a MnII species supported by three nitrogen ligands and a charge-balancing anion, a structure reminiscent of those found in molecular "scorpionate" complexes. Unlike molecular manganese(II) scorpionates, Mn-CFA-1 is capable of catalytically activating oxygen from air to oxidize C-H bonds up to 87 kcal/mol in strength. A series of in situ spectroscopic studies, including diffuse-reflectance UV-vis, diffuse-reflectance infrared Fourier transform spectroscopy, and X-ray absorption spectroscopy, reveal that catalysis likely proceeds through a manganese(III) hydroperoxo that is only accessed in the presence of a hydrogen-atom donor. These results demonstrate that the site isolation provided in metal-organic frameworks enables the generation and utilization of highly reactive species for catalysis that are inaccessible in molecular systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...