Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 15(5)2022 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-35268873

RESUMO

Phosphate and tellurite glasses can be used in optics, optoelectronics, magneto-optics, and nuclear and medical fields. Two series of phosphate-tellurite glasses, (50-x)ZnO-10Al2O3-40P2O5-xTeO2 and (40-x)Li2O-10Al2O3-5TiO2-45P2O5-xTeO2 (x = 5, 10), were synthesized by a non-conventional wet-route, and the mechanical properties as key performance measures for their application in optoelectronics were investigated. X-ray Diffraction (XRD) measurements revealed the vitreous nature of the investigated materials. Instrumented indentation tests allowed the calculation of hardness (H) and Young's modulus (E) using the Oliver and Pharr model. The influence of increasing the TeO2 content, as well as the substitution of ZnO by Li2O-TiO2, on the variation of hardness, Young's modulus, penetration depth (PD), and fracture toughness (FT) was evaluated in both series. As a general trend, there is a decrease in the hardness and Young's modulus with increasing penetration depth. The addition of Li2O and TiO2 instead of ZnO leads to improved hardness and elastic modulus values. Regarding the H/E ratio, it was found that the samples with lower TeO2 content should be significantly more crack-resistant compared to the higher TeO2 content samples. The H3/E2 ratio, being lower than 0.01, revealed a poor resistance of these glasses to plastic deformation. At the same time, a decrease of the fracture toughness with increasing TeO2 content was noticed for each glass series. Based on dilatometry measurements, the thermal expansion coefficient as well as the characteristic temperatures of the glasses were measured. Field Emission Scanning Electron Microscopy-Energy Dispersive X-ray analysis (FESEM-EDX) revealed a uniform distribution of the elements in the bulk samples. The mechanical properties of these vitreous materials are important in relation to their application as magneto-optical Faraday rotators in laser cavities.

2.
Nanomaterials (Basel) ; 10(9)2020 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-32962165

RESUMO

This work investigates the structural, magnetic and magneto-optical properties of a new zinc phosphate-tellurite glass belonging to the 45ZnO-10Al2O3-40P2O5-5TeO2 system. The glass was prepared by a wet method of processing the starting reagents followed by suitable melting-stirring-quenching-annealing steps. Specific parameters such as density, average molecular mass, molar volume, oxygen packaging density, refractive index, molar refractivity, electronic polarizability, reflection loss, optical transmission, band gap and optical basicity have been reported together with thermal, magnetic and magneto-optical characteristics. Absorption bands appear in the blue and red visible region, while over 600 nm the glass becomes more transparent. FTIR and Raman spectra evidenced phosphate-tellurite vibration modes proving the P2O5 and TeO2 network forming role. Magnetic measurements reveal the diamagnetic character of the Te-doped glass with an additional weak ferromagnetic signal, specific to diluted ferromagnetic oxides. Positive Faraday rotation angle with monotonous decreasing value at increasing wavelength was evidenced from magneto-optical measurements. The final product is a composite material comprising of a non-crystalline vitreous phase and Te-based nanoclusters accompanied by oxygen vacancies. The metallic-like Te colloids are responsible for the dark reddish color of the glass whereas the accompanying oxygen vacancies might be responsible for the weak ferromagnetic signal persisting up to room temperature.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...