Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neuroscience ; 114(2): 439-49, 2002.
Artigo em Inglês | MEDLINE | ID: mdl-12204213

RESUMO

Using the H(+)-sensitive fluorophore 2',7'-bis-(2-carboxyethyl)-5-(and-6)-carboxyfluorescein (BCECF) and microfluorimetry, we investigated how elevated intracellular free zinc ([Zn(2+)](i)) altered intracellular proton concentration (pH(i)) in dissociated cultures of rat forebrain neurons. Neurons exposed to extracellular zinc (3 microM) in the presence of the Zn(2+)-selective ionophore pyrithione (20 microM) underwent intracellular acidification that was not reversed upon washout of the stimulus. Application of a membrane-permeant Zn(2+) chelator, but not an impermeant chelator, partially restored pH(i). Removal of extracellular Ca(2+) greatly inhibited [Zn(2+)](i)-induced acidification, suggesting that acidification was a secondary consequence of Ca(2+) entry. Additional experiments suggested that Ca(2+) entered through the plasma membrane sodium/calcium exchanger (NCE), because a specific inhibitor of reverse mode NCE operation, KB-R7943 (1 microM), significantly inhibited Zn(2+)-induced acidification. In addition to the phenomenon of [Zn(2+)](i)-induced acidification, we found that elevated [Zn(2+)](i) inhibited neuronal recovery from low pH(i). Neurons exposed to a protonophore underwent robust acidification, and pH(i) recovery ensued upon protonophore washout. In contrast, neurons acidified by the protonophore in the presence of Zn(2+) (3 microM) and pyrithione (20 microM) showed no ability to recover from low pH(i). Application of a membrane-permeant Zn(2+) chelator partially restored pH(i) to pre-stimulus values. Experiments designed to elucidate mechanisms responsible for pH(i) regulation revealed that neurons relied primarily on bicarbonate exchange for proton export, suggesting that elevated [Zn(2+)](i) might impede pH(i) by inhibiting proton efflux via bicarbonate exchange. These results provide novel insights into the physiological effects of raising [Zn(2+)](i), and may help illuminate the mechanisms by which Zn(2+) injures neurons.


Assuntos
Isquemia Encefálica/metabolismo , Líquido Intracelular/metabolismo , Neurônios/metabolismo , Prosencéfalo/metabolismo , Prótons , Zinco/metabolismo , Animais , Antifúngicos/farmacologia , Isquemia Encefálica/fisiopatologia , Cálcio/metabolismo , Carbonil Cianeto p-Trifluormetoxifenil Hidrazona/farmacologia , Células Cultivadas , Feminino , Feto , Homeostase/efeitos dos fármacos , Homeostase/fisiologia , Concentração de Íons de Hidrogênio/efeitos dos fármacos , Líquido Intracelular/efeitos dos fármacos , Ionóforos/farmacologia , Neurônios/efeitos dos fármacos , Gravidez , Prosencéfalo/fisiopatologia , Piridinas/farmacologia , Ratos , Tionas , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/fisiologia , Zinco/toxicidade
2.
Am J Physiol Lung Cell Mol Physiol ; 282(2): L185-92, 2002 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-11792622

RESUMO

We hypothesized that metallothionein (MT), a cysteine-rich protein with a strong affinity for Zn(2+), plays a role in nitric oxide (NO) signaling events via sequestration or release of Zn(2+) by the unique thiolate clusters of the protein. Exposing mouse lung fibroblasts (MLF) to the NO donor S-nitrosocysteine resulted in 20-30% increases in fluorescence of the Zn(2+)-specific fluorophore Zinquin that were rapidly reversed by the Zn(2+) chelator N,N,N',N'-tetrakis-(2-pyridylmethyl)ethylenediamine. The absence of a NO-mediated increase in labile Zn(2+) in MLF from MT knockouts and its restoration after MT complementation by adenoviral gene transfer inferred a critical role for MT in the regulation of Zn(2+) homeostasis by NO. Additional data obtained in sheep pulmonary artery endothelial cells suggested a role for the apo form of MT, thionein (T), as a Zn(2+)-binding protein in intact cells, as overexpression of MT caused inhibition of NO-induced changes in labile Zn(2+) that were reversed by Zn(2+) supplementation. Furthermore, fluorescence-resonance energy-transfer data showed that overexpression of green fluorescent protein-modified MT prevented NO-induced conformational changes, which are indicative of Zn(2+) release from thiolate clusters. This effect was restored by Zn(2+) supplementation. Collectively, these data show that MT mediates NO-induced changes in intracellular Zn(2+) and suggest that the ratio of MT to T can regulate Zn(2+) homeostasis in response to nitrosative stress.


Assuntos
Cisteína/análogos & derivados , Homeostase/fisiologia , Pulmão/metabolismo , Metalotioneína/metabolismo , Óxido Nítrico/metabolismo , Zinco/metabolismo , Animais , Células Cultivadas , Quelantes/farmacologia , Cisteína/farmacologia , Endotélio Vascular/citologia , Endotélio Vascular/metabolismo , Ergotioneína/metabolismo , Etilenodiaminas/farmacologia , Feminino , Fibroblastos/citologia , Fibroblastos/metabolismo , Corantes Fluorescentes , Expressão Gênica/fisiologia , Pulmão/citologia , Masculino , Metalotioneína/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Doadores de Óxido Nítrico/farmacologia , Artéria Pulmonar/citologia , Quinolonas , S-Nitrosotióis/farmacologia , Ovinos , Espectrometria de Fluorescência , Compostos de Tosil , Zinco/farmacologia
4.
J Neurochem ; 75(5): 1878-88, 2000 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-11032877

RESUMO

The membrane-permeant oxidizing agent 2,2'-dithiodipyridine (DTDP) can induce Zn(2+) release from metalloproteins in cell-free systems. Here, we report that brief exposure to DTDP triggers apoptotic cell death in cultured neurons, detected by the presence of both DNA laddering and asymmetric chromatin formation. Neuronal death was blocked by increased extracellular potassium levels, by tetraethylammonium, and by the broad-spectrum cysteine protease inhibitor butoxy-carbonyl-aspartate-fluoromethylketone. N,N,N', N'-Tetrakis-(2-pyridylmethyl)ethylenediamine (TPEN) and other cell-permeant metal chelators also effectively blocked DTDP-induced toxicity in neurons. Cell death, however, was not abolished by the NMDA receptor blocker MK-801, by the intracellular calcium release antagonist dantrolene, or by high concentrations of ryanodine. DTDP generated increases in fluorescence signals in cultured neurons loaded with the zinc-selective dye Newport Green. The fluorescence signals following DTDP treatment also increased in fura-2- and magfura-2-loaded neurons. These responses were completely reversed by TPEN, consistent with a DTDP-mediated increase in intracellular free Zn(2+) concentrations. Our studies suggest that under conditions of oxidative stress, Zn(2+) released from intracellular stores may contribute to the initiation of neuronal apoptosis.


Assuntos
2,2'-Dipiridil/análogos & derivados , Apoptose , Líquido Intracelular/metabolismo , Neurônios/metabolismo , Compostos de Sulfidrila/metabolismo , Zinco/metabolismo , 2,2'-Dipiridil/toxicidade , Animais , Células Cultivadas , Quelantes/farmacologia , Técnicas de Cocultura , Fragmentação do DNA , Dissulfetos/antagonistas & inibidores , Dissulfetos/toxicidade , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/farmacologia , Corantes Fluorescentes , L-Lactato Desidrogenase/metabolismo , N-Metilaspartato/toxicidade , Neuroglia/citologia , Neuroglia/efeitos dos fármacos , Neurônios/citologia , Neurônios/efeitos dos fármacos , Oxirredução/efeitos dos fármacos , Potássio/metabolismo , Potássio/farmacologia , Ratos , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Reagentes de Sulfidrila/antagonistas & inibidores , Reagentes de Sulfidrila/toxicidade , Tetraetilamônio/farmacologia
5.
Neurobiol Dis ; 7(4): 310-20, 2000 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-10964603

RESUMO

Increased intracellular free Zn(2+) ([Zn(2+)](i)) is toxic to neurons. Glia are more resistant to Zn(2+)-mediated toxicity; however, it is not known if this is because glia are less permeable to Zn(2+) or if glia possess intrinsic mechanisms that serve to buffer or extrude excess [Zn(2+)](i). We used the Zn(2+)-selective ionophore pyrithione to directly increase [Zn(2+)](i) in both neurons and astrocytes. In neurons, a 5-min exposure to 1 microM extracellular Zn(2+) in combination with pyrithione produced widespread toxicity, whereas extensive astrocyte injury was not observed until extracellular Zn(2+) was increased to 10 microM. Measurements with magfura-2 demonstrated that pyrithione increased [Zn(2+)](i) to similar levels in both cell types. We also measured how increased [Zn(2+)](i) affects mitochondrial membrane potential (Deltapsi(m)). In astrocytes, but not in neurons, toxic [Zn(2+)](i) resulted in an acute loss of Deltapsi(m), suggesting that mitochondrial dysregulation may be an early event in [Zn(2+)](i)-induced astrocyte but not neuronal death.


Assuntos
Astrócitos/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Zinco/toxicidade , Animais , Astrócitos/patologia , Células Cultivadas , Embrião de Mamíferos , Corantes Fluorescentes/farmacocinética , Fura-2/análogos & derivados , Fura-2/farmacocinética , Membranas Intracelulares/efeitos dos fármacos , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/fisiologia , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/ultraestrutura , Neurônios/patologia , Prosencéfalo , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...