Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Br J Clin Pharmacol ; 90(4): 1027-1035, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37990600

RESUMO

AIMS: AP30663 is a novel compound under development for pharmacological conversion of atrial fibrillation by targeting the small conductance Ca2+ activated K+ (KCa2) channel. The aim of this extension phase 1 study was to test AP30663 at higher single doses compared to the first-in-human trial. METHODS: Sixteen healthy male volunteers were randomized into 2 cohorts: 6- and 8-mg/kg intravenous single-dose administration of AP30663 vs. placebo. Safety, pharmacokinetic and pharmacodynamic data were collected. RESULTS: AP30663 was associated with mild and transient infusion site reactions with no clustering of other adverse events but with an estimated maximum mean QTcF interval prolongation of 45.2 ms (95% confidence interval 31.5-58.9) in the 6 mg/kg dose level and 50.4 ms (95% confidence interval 36.7-64.0) with 8 mg/kg. Pharmacokinetics was dose proportional with terminal half-life of around 3 h. CONCLUSION: AP30663 in doses up to 8 mg/kg was associated with mild and transient infusion site reactions and an increase of the QTcF interval. Supporting Information support that the QTc effect may be explained by an off-target inhibition of the IKr channel.


Assuntos
Fibrilação Atrial , Humanos , Masculino , Fibrilação Atrial/induzido quimicamente , Fibrilação Atrial/tratamento farmacológico , Relação Dose-Resposta a Droga , Método Duplo-Cego , Eletrocardiografia , Frequência Cardíaca , Reação no Local da Injeção
2.
Int J Cardiol Heart Vasc ; 37: 100898, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34746364

RESUMO

BACKGROUND: Atrial dilation is an important risk factor for atrial fibrillation (AF) and animal studies have found that acute atrial dilation shortens the atrial effective refractory period (AERP) and increases the risk of AF. Stretch activated ion channels (SACs) and calcium channels play a role in this. The expression profile and calcium dependent activation makes the small conductance calcium activated K+ channel (KCa2.x) a candidate for coupling stretch induced increases in intracellular calcium through K+-efflux and thereby shortening of atrial refractoriness. OBJECTIVES: We hypothesized that KCa2.x channel inhibitors can prevent the stretch induced shortening of AERP and protect the heart from AF. METHODS: The effect of KCa2 channel inhibitor (N-(pyridin-2-yl)-4-(pyridin-2-yl)thiazol-2-amine (ICA) 1 µM) was investigated using the isolated perfused rabbit heart preparation. To stretch the left atrium (LA) a balloon was inserted and inflated. AERP and action potential duration (APD) were recorded before and after atrial stretch. AF was induced by burst pacing the LA at different degrees of atrial stretch. RESULTS: Stretching of the LA by increasing the balloon pressure from 0 to 20 mmHg shortened the AERP by 8.6 ± 1 ms. In comparison, the KCa2 inhibitor ICA significantly attenuated the stretch induced shortening of AERP to 2.5 ± 1.1 ms. Total AF duration increased linearly with atrial balloon pressure. This relationship was not found in the presence of ICA. ICA lowered the incidence of AF induction and total AF duration. CONCLUSION: The KCa2 channel inhibitor ICA attenuates the acute stretch induced shortening of AERP and decreases stretch induced vulnerability to AF.

3.
Europace ; 23(11): 1847-1859, 2021 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-34080619

RESUMO

AIMS: Pharmacological termination of atrial fibrillation (AF) remains a challenge due to limited efficacy and potential ventricular proarrhythmic effects of antiarrhythmic drugs. SK channels are proposed as atrial-specific targets in the treatment of AF. Here, we investigated the effects of the new SK channel inhibitor AP14145. METHODS AND RESULTS: Eight goats were implanted with pericardial electrodes for induction of AF (30 days). In an open-chest study, the atrial conduction velocity (CV) and effective refractory period (ERP) were measured during pacing. High-density mapping of both atrial free-walls was performed during AF and conduction properties were assessed. All measurements were performed at baseline and during AP14145 infusion [10 mg/kg/h (n = 1) or 20 mg/kg/h (n = 6)]. At an infusion rate of 20 mg/kg/h, AF terminated in five of six goats. AP14145 profoundly increased ERP and reduced CV during pacing. AP14145 increased spatiotemporal instability of conduction at short pacing cycle lengths. Atrial fibrillation cycle length and pathlength (AF cycle length × CV) underwent a strong dose-dependent prolongation. Conduction velocity during AF remained unchanged and conduction patterns remained complex until the last seconds before AF termination, during which a sudden and profound organization of fibrillatory conduction occurred. CONCLUSION: AP14145 provided a successful therapy for termination of persistent AF in goats. During AF, AP14145 caused an ERP and AF cycle length prolongation. AP14145 slowed CV during fast pacing but did not lead to a further decrease during AF. Termination of AF was preceded by an abrupt organization of AF with a decline in the number of fibrillation waves.


Assuntos
Fibrilação Atrial , Antiarrítmicos/farmacologia , Antiarrítmicos/uso terapêutico , Fibrilação Atrial/diagnóstico , Fibrilação Atrial/tratamento farmacológico , Átrios do Coração , Humanos
4.
Front Physiol ; 12: 614483, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33633584

RESUMO

BACKGROUND: Small-conductance Ca2+-activated K+ (KCa2) channels have been proposed as a possible atrial-selective target to pharmacologically terminate atrial fibrillation (AF) and to maintain sinus rhythm. However, it has been hypothesized that the importance of the KCa2 current-and thereby the efficacy of small-conductance Ca2+-activated K+ current (I K,Ca) inhibition-might be negatively related to AF duration and the extent of AF-induced remodeling. EXPERIMENTAL APPROACH AND METHODS: To address the hypothesis of the efficacy of I K,Ca inhibition being dependent on AF duration, the anti-arrhythmic properties of the I K,Ca inhibitor NS8593 (5 mg/kg) and its influence on atrial conduction were studied using epicardial high-density contact mapping in horses with persistent AF. Eleven Standardbred mares with tachypacing-induced persistent AF (42 ± 5 days of AF) were studied in an open-chest experiment. Unipolar AF electrograms were recorded and isochronal high-density maps analyzed to allow for the reconstruction of wave patterns and changes in electrophysiological parameters, such as atrial conduction velocity and AF cycle length. Atrial anti-arrhythmic properties and adverse effects of NS8593 on ventricular electrophysiology were evaluated by continuous surface ECG monitoring. RESULTS: I K,Ca inhibition by NS8593 administered intravenously had divergent effects on right and left AF complexity and propagation properties in this equine model of persistent AF. Despite global prolongation of AF cycle length, a slowing of conduction in the right atrium led to increased anisotropy and electrical dissociation, thus increasing AF complexity. In contrast, there was no significant change in AF complexity in the LA, and cardioversion of AF was not achieved. CONCLUSIONS: Intra-atrial heterogeneity in response to I K,Ca inhibition by NS8593 was observed. The investigated dose of NS8593 increased the AF cycle length but was not sufficient to induce cardioversion. In terms of propagation properties during AF, I K,Ca inhibition by NS8593 led to divergent effects in the right and left atrium. This divergent behavior may have impeded the cardioversion success.

5.
Front Pharmacol ; 11: 749, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32508659

RESUMO

BACKGROUND: Hypokalemia reduces the cardiac repolarization reserve. This prolongs the QT-interval and increases the risk of ventricular arrhythmia; a risk that is exacerbated by administration of classical class 3 anti-arrhythmic agents.Small conductance Ca2+-activated K+-channels (KCa2) are a promising new atrial selective target for treatment of atrial fibrillation. Under physiological conditions KCa2 plays a minor role in ventricular repolarization. However, this might change under hypokalemia because of concomitant increases in ventriculay -60r intracellur Ca2+. PURPOSE: To study the effects of pharmacological KCa2 channel inhibition by the compounds AP14145, ICA, or AP30663 under hypokalemic conditions as compared to dofetilide and hypokalemia alone time-matched controls (TMC). METHODS: The current at +10 mV was compared in HEK293 cells stably expressing KCa2.3 perfused first with normo- and then hypokalemic solutions (4 mM K+ and 2.5 mM K+, respectively). Guinea pig hearts were isolated and perfused with normokalemic (4 mM K+) Krebs-Henseleit solution, followed by perfusion with drug or vehicle control. The perfusion was then changed to hypokalemic solution (2.5 mM K+) in presence of drug. 30 animals were randomly assigned to 5 groups: ICA, AP14145, AP30663, dofetilide, or TMC. QT-interval, the interval from the peak to the end of the T wave (Tp-Te), ventricular effective refractory period (VERP), arrhythmia score, and ventricular fibrillation (VF) incidence were recorded. RESULTS: Hypokalemia slightly increased KCa2.3 current compared to normokalemia. Application of KCa2 channel inhibitors and dofetilide prolonged the QT interval corrected for heart rate. Dofetilide, but none of the KCa2 channel inhibitors increased Tp-Te during hypokalemia. During hypokalemia 4/6 hearts in the TMC group developed VF (two spontaneously, two by S1S2 stimulation) whereas 5/6 hearts developed VF in the dofetilide group (two spontaneously, three by S1S2 stimulation). In comparison, 0/6, 1/6, and 1/6 hearts developed VF when treated with the KCa2 channel inhibitors AP30663, ICA, or AP14145, respectively. CONCLUSION: Hypokalemia was associated with an increased incidence of VF, an effect that also seen in the presence of dofetilide. In comparison, the structurally and functionally different KCa2 channel inhibitors, ICA, AP14145, and AP30663 protected the heart from hypokalemia induced VF. These results support that KCa2 inhibition may be associated with a better safety and tolerability profile than dofetilide.

6.
Front Pharmacol ; 11: 610, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32477117

RESUMO

AIMS: Small conductance Ca2+-activated K+ channels (SK channels, KCa2) are a new target for treatment of atrial fibrillation (AF). AP30663 is a small molecule inhibitor of KCa2 channels that is currently in clinical development for treatment of AF. The aim of this study is to present the electrophysiological profile and mechanism of action of AP30663 and its efficacy in prolonging atrial refractoriness in rodents, and by bioinformatic analysis investigate if genetic variants in KCNN2 or KCNN3 influence the expression level of these in human heart tissue. METHODS AND RESULTS: Whole-cell and inside-out patch-clamp recordings of heterologously expressed KCa2 channels revealed that AP30663 inhibits KCa2 channels with minor effects on other relevant cardiac ion channels. AP30663 modulates the KCa2.3 channel by right-shifting the Ca2+-activation curve. In isolated guinea pig hearts AP30663 significantly prolonged the atrial effective refractory period (AERP) with minor effects on the QT-interval corrected for heart rate. Similarly, in anaesthetized rats 5 and 10 mg/kg of AP30663 changed the AERP to 130.7±5.4% and 189.9±18.6 of baseline values. The expression quantitative trait loci analyses revealed that the genome wide association studies for AF SNP rs13376333 in KCNN3 is associated with increased mRNA expression of KCNN3 in human atrial appendage tissue. CONCLUSIONS: AP30663 is a novel negative allosteric modulator of KCa2 channels that concentration-dependently prolonged rodent atrial refractoriness with minor effects on the QT-interval. Moreover, AF associated SNPs in KCNN3 influence KCNN3 mRNA expression in human atrial tissue. These properties support continued development of AP30663 for treatment of AF in man.

7.
Front Pharmacol ; 11: 556, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32435191

RESUMO

BACKGROUND: Inhibition of KCa2 channels, conducting IKCa, can convert atrial fibrillation (AF) to sinus rhythm and protect against its induction. IKCa inhibition has been shown to possess functional atrial selectivity with minor effects on ventricles. Under pathophysiological conditions with ventricular remodeling, however, inhibiting IKCa can exhibit both proarrhythmic and antiarrhythmic ventricular effects. The aim of this study was to evaluate the effects of the IKCa inhibitor AP14145, when given before or after the IKr blocker dofetilide, on cardiac function and ventricular proarrhythmia markers in pigs with or without left ventricular dysfunction (LVD). METHODS: Landrace pigs were randomized into an AF group (n = 6) and two control groups: SHAM1 (n = 8) and SHAM2 (n = 4). AF pigs were atrially tachypaced (A-TP) for 43 ± 4 days until sustained AF and LVD developed. A-TP and SHAM1 pigs received 20 mg/kg AP14145 followed by 100 µg/kg dofetilide whereas SHAM2 pigs received the same drugs in the opposite order. Proarrhythmic markers such as short-term variability of QT (STVQT) and RR (STVRR) intervals, and the number of premature ventricular complexes (PVCs) were measured at baseline and after administration of drugs. The influence on cardiac function was assessed by measuring cardiac output, stroke volume, and relevant echocardiographic parameters. RESULTS: IKCa inhibition by AP14145 did not increase STVQT or STVRR in any of the pigs. IKr inhibition by dofetilide markedly increased STVQT in the A-TP pigs, but not in SHAM operated pigs. Upon infusion of AP14145 the number of PVCs decreased or remained unchanged both when AP14145 was infused after baseline and after dofetilide. Conversely, the number of PVCs increased or remained unchanged upon dofetilide infusion. Neither AP14145 nor dofetilide affected relevant echocardiographic parameters, cardiac output, or stroke volume in any of the groups. CONCLUSION: IKCa inhibition with AP14145 was not proarrhythmic in healthy pigs, or in the presence of LVD resulting from A-TP. In pigs already challenged with 100 µg/kg dofetilide there were no signs of proarrhythmia when 20 mg/kg AP14145 were infused. KCa2 channel inhibition did not affect cardiac function, implying that KCa2 inhibitors can be administered safely also in the presence of LV dysfunction.

8.
Front Vet Sci ; 7: 179, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32328502

RESUMO

Background: Atrial fibrillation (AF) is characterized by electrical and structural remodeling. Irregular and/or fast atrio-ventricular (AV) conduction during AF can result in AV dyssynchrony, tachymyopathy, pressure and volume overload with subsequent dilatation, valve regurgitation, and ventricular dysfunction with progression to heart failure. Objective: To gain further insight into the myocardial pathophysiological changes induced by right atrial tachypacing (A-TP) in a large animal model. Methods: A total of 28 Landrace pigs were randomized as 14 into AF-induced A-TP group and 14 pigs to control group. AF pigs were tachypaced for 43 ± 4 days until in sustained AF. Functional remodeling was investigated by echocardiography (after cardioversion to sinus rhythm). Structural remodeling was quantified by histological preparations with picrosirius red and immunohistochemical stainings. Results: A-TP resulted in decreased left ventricular ejection fraction (LVEF) accompanied by increased end-diastolic and end-systolic left atrium (LA) volume and area. In addition, A-TP was associated with mitral valve (MV) regurgitation, diastolic dysfunction and increased atrial and ventricular fibrotic extracellular matrix (ECM). Conclusions: A-TP induced AF with concomitant LV systolic and diastolic dysfunction, increased LA volume and area, and atrial and ventricular fibrosis.

9.
Front Pharmacol ; 11: 159, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32180722

RESUMO

AIMS: To describe the effects of the KCa2 channel inhibitor AP30663 in pigs regarding tolerability, cardiac electrophysiology, pharmacokinetics, atrial functional selectivity, effectiveness in cardioversion of tachy-pacing induced vernakalant-resistant atrial fibrillation (AF), and prevention of reinduction of AF. METHODS AND RESULTS: Six healthy pigs with implanted pacemakers and equipped with a Holter monitor were used to compare the effects of increasing doses (0, 5, 10, 15, 20, and 25 mg/kg) of AP30663 on the right atrial effective refractory period (AERP) and on various ECG parameters, including the QT interval. Ten pigs with implanted neurostimulators were long-term atrially tachypaced (A-TP) until sustained vernakalant-resistant AF was present. 20 mg/kg AP30663 was tested to discover if it could successfully convert vernakalant-resistant AF to sinus rhythm (SR) and protect against reinduction of AF. Seven anesthetized pigs were used for pharmacokinetic experiments. Two pigs received an infusion of 20 mg/kg AP30663 over 60 min while five pigs received 5 mg/kg AP30663 over 30 min. Blood samples were collected before, during, and after infusion on AP30663. AP30663 was well-tolerated and prominently increased the AERP in pigs with little effect on ventricular repolarization. Furthermore, it converted A-TP induced AF that had become unresponsive to vernakalant, and it prevented reinduction of AF in pigs. Both a >30 ms increase of the AERP and conversion of AF occurred in different pigs at a free plasma concentration level of around 1.0-1.4 µM of AP30663, which was achieved at a dose level of 5 mg/kg. CONCLUSION: AP30663 has shown properties in animals that would be of clinical interest in man.

10.
Front Pharmacol ; 10: 668, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31275147

RESUMO

Background and Purpose: Prolongation of cardiac action potentials is considered antiarrhythmic in the atria but can be proarrhythmic in ventricles if the current carried by Kv11.1-channels (IKr) is inhibited. The current mediated by KCa2-channels, IKCa, is considered a promising new target for treatment of atrial fibrillation (AF). Selective inhibitors of IKr (dofetilide) and IKCa (AP14145) were used to compare the effects on ventricular and atrial repolarization. Ondansetron, which has been reported to be a potent blocker of both IKr and IKCa, was included to examine its potential atrial antiarrhythmic properties. Experimental Approach: The expression of KCa2- and Kv11.1-channels in the guinea pig heart was investigated using quantitative polymerase chain reaction (qPCR). Whole-cell patch clamp technique was used to investigate the effects of dofetilide, AP14145, and ondansetron on IKCa and/or IKr. The effect of dofetilide, AP14145, and ondansetron on atrial and ventricular repolarization was investigated in isolated hearts. A novel atrial paced in vivo guinea pig model was further validated using AP14145 and dofetilide. Key Results: AP14145 increased the atrial effective refractory period (AERP) without prolonging the QT interval with Bazett's correction for heart rate (QTcB) both ex vivo and in vivo. In contrast, dofetilide increased QTcB and, to a lesser extent, AERP in isolated hearts and prolonged QTcB with no effects on AERP in the in vivo guinea pig model. Ondansetron did not inhibit IKCa, but did inhibit IKr in vitro. Ondansetron prolonged ventricular, but not atrial repolarization ex vivo. Conclusion and Implications: IKCa inhibition by AP14145 selectively increases atrial repolarization, whereas IKr inhibition by dofetilide and ondansetron increases ventricular repolarization to a larger extent than atrial repolarization.

11.
Artigo em Inglês | MEDLINE | ID: mdl-29018164

RESUMO

BACKGROUND: Evidence has emerged that small-conductance Ca2+-activated K+ (SK) channels constitute a new target for treatment of atrial fibrillation (AF). SK channels are predominantly expressed in the atria as compared with the ventricles. Various marketed antiarrhythmic drugs are limited by ventricular adverse effects and efficacy loss as AF progresses. METHODS AND RESULTS: A total of 43 pigs were used for the studies. AF reversion in conscious long-term tachypaced pigs: Pigs were subjected to atrial tachypacing (7 Hz) until they developed sustained AF that could not be reverted by vernakalant 4 mg/kg (18.8±3.3 days of atrial tachypacing). When the SK channel inhibitor AP14145 was tested in these animals, vernakalant-resistant AF was reverted to sinus rhythm, and reinduction of AF by burst pacing (50 Hz) was prevented in 8 of 8 pigs. Effects on refractory period and AF duration in open chest pigs: The effects of AP14145 and vernakalant on the effective refractory periods and acute burst pacing-induced AF were examined in anaesthetized open chest pigs. Both vernakalant and AP14145 significantly prolonged atrial refractoriness and reduced AF duration without affecting the ventricular refractoriness or blood pressure in pigs subjected to 7 days atrial tachypacing, as well as in sham-operated control pigs. CONCLUSIONS: SK currents play a role in porcine atrial repolarization, and pharmacological inhibition of these with AP14145 demonstrates antiarrhythmic effects in a vernakalant-resistant porcine model of AF. These results suggest SK channel blockers as potentially interesting anti-AF drugs.


Assuntos
Anisóis/farmacologia , Fibrilação Atrial/tratamento farmacológico , Fibrilação Atrial/fisiopatologia , Pirrolidinas/farmacologia , Canais de Potássio Ativados por Cálcio de Condutância Baixa/antagonistas & inibidores , Acetamidas , Animais , Estimulação Cardíaca Artificial , Modelos Animais de Doenças , Progressão da Doença , Técnicas de Patch-Clamp , Período Refratário Eletrofisiológico , Suínos
12.
Pflugers Arch ; 468(11-12): 1853-1863, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27722784

RESUMO

Dose is an important parameter in terms of both efficacy and adverse effects in pharmacological treatment of atrial fibrillation (AF). Both of the class III antiarrhythmics dofetilide and amiodarone have documented anti-AF effects. While dofetilide has dose-related ventricular side effects, amiodarone primarily has adverse non-cardiac effects. Pharmacological inhibition of small conductance Ca2+-activated K+ (SK) channels has recently been reported to be antiarrhythmic in a number of animal AF models. In a Langendorff model of acutely induced AF on guinea pig hearts, it was investigated whether a combination of the SK channel blocker N-(pyridin-2-yl)-4-(pyridin-2-yl)thiazol-2-amine (ICA) together with either dofetilide or amiodarone provided a synergistic effect. The duration of AF was reduced with otherwise subefficacious concentrations of either dofetilide or amiodarone when combined with ICA, also at a subefficacious concentration. At a concentration level effective as monotherapy, dofetilide produced a marked increase in the QT interval. This QT prolonging effect was absent when combined with ICA at non-efficacious monotherapy concentrations. The results thereby reveal that combination of subefficacious concentrations of an SK channel blocker and either dofetilide or amiodarone can maintain anti-AF properties, while the risk of ventricular arrhythmias is reduced.


Assuntos
Amiodarona/farmacologia , Antiarrítmicos/farmacologia , Fibrilação Atrial/tratamento farmacológico , Coração/efeitos dos fármacos , Fenetilaminas/farmacologia , Bloqueadores dos Canais de Potássio/farmacologia , Piridinas/farmacologia , Sulfonamidas/farmacologia , Tiazóis/farmacologia , Amiodarona/uso terapêutico , Animais , Antiarrítmicos/uso terapêutico , Sinergismo Farmacológico , Cobaias , Frequência Cardíaca , Preparação de Coração Isolado , Fenetilaminas/uso terapêutico , Piridinas/uso terapêutico , Canais de Potássio Ativados por Cálcio de Condutância Baixa/antagonistas & inibidores , Sulfonamidas/uso terapêutico , Tiazóis/uso terapêutico
13.
Heart Rhythm ; 12(4): 825-35, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25542425

RESUMO

BACKGROUND: Small-conductance calcium-activated potassium (SK) channels have been found to play an important role in atrial repolarization and atrial fibrillation (AF). OBJECTIVE: The purpose of this study was to investigate the existence and functional role of SK channels in the equine heart. METHODS: Cardiac biopsies were analyzed to investigate the expression level of the most prominent cardiac ion channels, with special focus on SK channels, in the equine heart. Subcellular distribution of SK isoform 2 (SK2) was assessed by immunohistochemistry and confocal microscopy. The electrophysiologic and anti-AF effects of the relative selective SK channel inhibitor NS8593 (5 mg/kg IV) were evaluated in anesthetized horses, focusing on the potential of NS8593 to terminate acute pacing-induced AF, drug-induced changes in atrial effective refractory period, AF duration and vulnerability, and ventricular depolarization and repolarization times. RESULTS: Analysis revealed equivalent mRNA transcript levels of the 3 SK channel isoforms in atria compared to ventricles. Immunohistochemistry and confocal microscopy displayed a widespread distribution of SK2 in both atrial and ventricular cardiomyocytes. NS8593 terminated all induced AF episodes (duration ≥15 minutes), caused pronounced prolongation of atrial effective refractory period, and reduced AF duration and vulnerability. QRS duration and QTc interval were not affected by treatment. CONCLUSION: SK channels are widely distributed in atrial and ventricular cardiomyocytes and contribute to atrial repolarization. Inhibition by NS8593 terminates pacing-induced AF of short duration and decreases AF duration and vulnerability without affecting ventricular conduction and repolarization. Thus, inhibition by NS8593 demonstrates clear atrial antiarrhythmic properties in healthy horses.


Assuntos
1-Naftilamina/análogos & derivados , Fibrilação Atrial , Miócitos Cardíacos , Canais de Potássio Ativados por Cálcio de Condutância Baixa , 1-Naftilamina/farmacologia , Animais , Antiarrítmicos/farmacologia , Fibrilação Atrial/tratamento farmacológico , Fibrilação Atrial/metabolismo , Fibrilação Atrial/patologia , Modelos Animais de Doenças , Técnicas Eletrofisiológicas Cardíacas , Átrios do Coração/metabolismo , Átrios do Coração/patologia , Cavalos , Imuno-Histoquímica , Microscopia Confocal , Modelos Anatômicos , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Canais de Potássio Ativados por Cálcio de Condutância Baixa/antagonistas & inibidores , Canais de Potássio Ativados por Cálcio de Condutância Baixa/fisiologia , Resultado do Tratamento
14.
Heart Rhythm ; 12(2): 409-18, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25496982

RESUMO

BACKGROUND: Application of antiarrhythmic compounds is limited by both proarrhythmic and extracardiac toxicities, as well as incomplete antiarrhythmic efficacy. An improved antiarrhythmic potential may be obtained by combining antiarrhythmic drugs with different modes of action, and a reduction of the adverse effect profile could be an additional advantage if compound concentrations could be reduced. OBJECTIVE: The purpose of this study was to test the hypothesis that combined inhibition of Ca(2+)-activated K(+) channels (SK channels) and voltage-gated Na(+) channels, in concentrations that would be subefficacious as monotherapy, may prevent atrial fibrillation (AF) and have reduced proarrhythmic potential in the ventricles. METHODS: Subefficacious concentrations of ranolazine, flecainide, and lidocaine were tested alone or in combination with the SK channel blocker N-(pyridin-2-yl)-4-(pyridin-2-yl)thiazol-2-amine (ICA) in a Langendorff-perfused guinea pig heart model in which AF was induced after acetylcholine application and burst pacing. RESULTS: AF duration was reduced when both flecainide and ranolazine were combined with ICA in doses that did not reduce AF as monotherapy. At higher concentrations, both flecainide and ranolazine revealed proarrhythmic properties. CONCLUSION: A synergistic effect in AF treatment was obtained by combining low concentrations of SK and Na(+) channel blockers.


Assuntos
Fibrilação Atrial/tratamento farmacológico , Eletrocardiografia/efeitos dos fármacos , Canais de Potássio Ativados por Cálcio de Condutância Baixa/antagonistas & inibidores , Bloqueadores do Canal de Sódio Disparado por Voltagem/farmacologia , Canais de Sódio Disparados por Voltagem/efeitos dos fármacos , Acetanilidas/farmacologia , Animais , Antiarrítmicos/farmacologia , Fibrilação Atrial/metabolismo , Fibrilação Atrial/fisiopatologia , Modelos Animais de Doenças , Sinergismo Farmacológico , Quimioterapia Combinada , Feminino , Flecainida/farmacologia , Cobaias , Piperazinas/farmacologia , Ranolazina , Canais de Potássio Ativados por Cálcio de Condutância Baixa/metabolismo , Canais de Sódio Disparados por Voltagem/metabolismo
15.
Cardiovasc Res ; 103(1): 156-67, 2014 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-24817686

RESUMO

AIMS: Small-conductance calcium-activated potassium (SK) channels are expressed in the heart of various species, including humans. The aim of the present study was to address whether SK channels play a functional role in human atria. METHODS AND RESULTS: Quantitative real-time PCR analyses showed higher transcript levels of SK2 and SK3 than that of the SK1 subtype in human atrial tissue. SK2 and SK3 were reduced in chronic atrial fibrillation (AF) compared with sinus rhythm (SR) patients. Immunohistochemistry using confocal microscopy revealed widespread expression of SK2 in atrial myocytes. Two SK channel inhibitors (NS8593 and ICAGEN) were tested in heterologous expression systems revealing ICAGEN as being highly selective for SK channels, while NS8593 showed less selectivity for these channels. In isolated atrial myocytes from SR patients, both inhibitors decreased inwardly rectifying K(+) currents by ∼15% and prolonged action potential duration (APD), but no effect was observed in myocytes from AF patients. In trabeculae muscle strips from right atrial appendages of SR patients, both compounds increased APD and effective refractory period, and depolarized the resting membrane potential, while only NS8593 induced these effects in tissue from AF patients. SK channel inhibition did not alter any electrophysiological parameter in human interventricular septum tissue. CONCLUSIONS: SK channels are present in human atria where they participate in repolarization. SK2 and SK3 were down-regulated and had reduced functional importance in chronic AF. As SK current was not found to contribute substantially to the ventricular AP, pharmacological inhibition of SK channels may be a putative atrial-selective target for future antiarrhythmic drug therapy.


Assuntos
Miocárdio/metabolismo , Canais de Potássio Ativados por Cálcio de Condutância Baixa/metabolismo , 1-Naftilamina/análogos & derivados , 1-Naftilamina/farmacologia , Potenciais de Ação/efeitos dos fármacos , Fibrilação Atrial/genética , Fibrilação Atrial/metabolismo , Átrios do Coração/metabolismo , Ventrículos do Coração/metabolismo , Humanos , Potenciais da Membrana/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Piridinas/farmacologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Canais de Potássio Ativados por Cálcio de Condutância Baixa/antagonistas & inibidores , Canais de Potássio Ativados por Cálcio de Condutância Baixa/genética , Tiazóis/farmacologia
16.
J Cardiovasc Pharmacol ; 59(2): 142-50, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21992969

RESUMO

Animal models of pacing-induced heart failure (HF) are often associated with high acute mortality secondary to high pacing frequencies. The present study therefore exploits lower-frequency left ventricular pacing (300 beats per minute) in rabbits for 11 weeks to produce chronic HF with low acute mortality but profound structural, functional, and electrical remodeling and compare with nonpaced controls. Pacing increased heart weight/body weight ratio and decreased left ventricular fractional shortening in tachypaced only. Electrocardiogram recordings during sinus rhythm revealed QTc prolongation in paced animals. Ventricular arrhythmias or sudden death was not observed. Isoproterenol increased heart rate similarly in both groups but showed a blunted QT-shortening effect in tachypaced rabbits compared with controls. Langendorff experiments revealed significant monophasic action potential duration prolongation in tachypaced hearts and reduced contractility at cycle lengths from 400 to 250 ms. Hyperkalemia caused monophasic action potential duration shortening in controls, whereas crossover was seen in tachypaced with monophasic action potential duration prolongation at short cycle length. Hypokalemia prolonged monophasic action potential duration and increased short-term variability of repolarization in tachypaced hearts. A blunted monophasic action potential duration response was observed ex vivo in tachypaced hearts after isoproterenol. The HF rabbits showed structural, functional, and electrical remodeling but very low mortality. Isokalemic and hyperkalemic responses indicate downregulation of functional IKs. Increased short-term variability during hypokalemia unmasks a reduced repolarization reserve.


Assuntos
Agonistas Adrenérgicos beta/farmacologia , Estimulação Cardíaca Artificial/efeitos adversos , Insuficiência Cardíaca/fisiopatologia , Isoproterenol/farmacologia , Potenciais de Ação , Animais , Estimulação Cardíaca Artificial/métodos , Doença Crônica , Modelos Animais de Doenças , Regulação para Baixo , Eletrocardiografia , Feminino , Insuficiência Cardíaca/etiologia , Insuficiência Cardíaca/mortalidade , Frequência Cardíaca/efeitos dos fármacos , Hiperpotassemia/fisiopatologia , Hipopotassemia/fisiopatologia , Síndrome do QT Longo/etiologia , Contração Miocárdica , Canais de Potássio/metabolismo , Coelhos
17.
Artigo em Inglês | MEDLINE | ID: mdl-21987061

RESUMO

Atrial fibrillation (AF) is recognised as the most common sustained cardiac arrhythmia in clinical practice. Ongoing drug development is aiming at obtaining atrial specific effects in order to prevent pro-arrhythmic, devastating ventricular effects. In principle, this is possible due to a different ion channel composition in the atria and ventricles. The present text will review the aetiology of arrhythmias with focus on AF and include a description of cardiac ion channels. Channels that constitute potentially atria-selective targets will be described in details. Specific focus is addressed to the recent discovery that Ca(2+)-activated small conductance K(+) channels (SK channels) are important for the repolarisation of atrial action potentials. Finally, an overview of current pharmacological treatment of AF is included.


Assuntos
Antiarrítmicos/farmacologia , Arritmias Cardíacas/tratamento farmacológico , Arritmias Cardíacas/fisiopatologia , Fibrilação Atrial/tratamento farmacológico , Fibrilação Atrial/prevenção & controle , Fibrilação Atrial/fisiopatologia , Bloqueadores dos Canais de Cálcio/farmacologia , Canais Iônicos/metabolismo , Bloqueadores dos Canais de Potássio/farmacologia , Potenciais de Ação , Animais , Cálcio/metabolismo , Eletrofisiologia , Coração/fisiologia , Humanos , Íons , Modelos Biológicos , Canais de Potássio/metabolismo
18.
J Cardiovasc Pharmacol ; 57(6): 672-81, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21394037

RESUMO

Atrial fibrillation (AF) is associated with increased morbidity and is in addition the most prevalent cardiac arrhythmia. Compounds used in pharmacological treatment has traditionally been divided into Na(+) channel inhibitors, ß-blockers, K(+) channel inhibitors, and Ca(2+) channel inhibitors, whereas newer multichannel blockers such as amiodarone and ranolazine have been introduced later. This study was devoted to the evaluation of an acute pacing-induced in vivo model of AF in rats. Antiarrhythmic effects of well-known compounds such as lidocaine, dofetilide, and ranolazine were confirmed in this model. In addition, antiarrhythmic effects of different inhibitors of Ca(2+)-activated small conductance K(+) (SK) channels were demonstrated. Intravenous application of 5 mg/kg of the negative SK channel modulator NS8593 reduced AF duration by 64.5%, and the lowest significantly effective dose was 1.5 mg/kg. A dose-effect relationship was established based on 6 different dose groups. Furthermore, it was demonstrated that the antiarrhythmic effect of NS8593 and other tested drugs was associated with an increase in atrial effective refractory period. The functional role of SK channels was confirmed by 2 other SK channel inhibitors, UCL1684 and apamin, thereby confirming the hypothesis that these channels might constitute a new promising target for antiarrhythmic treatment.


Assuntos
Antiarrítmicos/uso terapêutico , Fibrilação Atrial/prevenção & controle , Estimulação Cardíaca Artificial/efeitos adversos , Bloqueadores dos Canais de Potássio/uso terapêutico , Canais de Potássio Ativados por Cálcio de Condutância Baixa/antagonistas & inibidores , 1-Naftilamina/administração & dosagem , 1-Naftilamina/análogos & derivados , 1-Naftilamina/uso terapêutico , Alcanos/uso terapêutico , Anestesia , Animais , Antiarrítmicos/administração & dosagem , Apamina/uso terapêutico , Fibrilação Atrial/tratamento farmacológico , Fibrilação Atrial/etiologia , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Proteínas de Insetos/uso terapêutico , Masculino , Terapia de Alvo Molecular , Bloqueadores dos Canais de Potássio/administração & dosagem , Compostos de Quinolínio/uso terapêutico , Distribuição Aleatória , Ratos , Ratos Sprague-Dawley , Tempo de Reação/efeitos dos fármacos , Fatores de Tempo
19.
Circ Arrhythm Electrophysiol ; 3(4): 380-90, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20562443

RESUMO

BACKGROUND: Recently, evidence has emerged that small-conductance Ca(2+)-activated K(+) (SK) channels are predominantly expressed in the atria in a number of species including human. In rat, guinea pig, and rabbit ex vivo and in vivo models of atrial fibrillation (AF), we used 3 different SK channel inhibitors, UCL1684, N-(pyridin-2-yl)-4-(pyridin-2-yl)thiazol-2-amine (ICA), and NS8593, to assess the hypothesis that pharmacological inhibition of SK channels is antiarrhythmic. METHODS AND RESULTS: In isolated, perfused guinea pig hearts, AF could be induced in all control hearts (n=7) with a combination of 1 micromol/L acetylcholine combined with electric stimulation. Pretreatment with 3 micromol/L NS8593, which had no effect on QT interval, prolonged the atrial effective refractory period by 37.1+/-7.7% (P<0.001) and prevented acetylcholine-induced AF (P<0.001, n=7). After AF induction, perfusion with NS8593 (10 micromol/L), UCL1684 (1 micromol/L), or ICA (1 micromol/L) terminated AF in all hearts, comparable to 10 micromol/L amiodarone. In isolated, perfused rat hearts, AF was induced with electric stimulation; 10 micromol/L NS8593 terminated AF and prevented reinduction of AF in all hearts (n=6, P<0.001). In all hearts, AF could be reinduced after washing. In isolated, perfused rabbit hearts, AF was induced with 10 micromol/L acetylcholine and burst pacing; 10 micromol/L NS8593 terminated AF and prevented reinduction of AF in all hearts (n=6, P<0.001). After washing, AF could be reinduced in 75% of the hearts (n=4, P=0.06). In an in vivo rat model of acute AF induced by burst pacing, injection of 5 mg/kg of either NS8593 or amiodarone shortened AF duration significantly to (23.2+/-20.0%, P<0.001, n=5, and 26.2+/-17.9%, P<0.001, n=5, respectively) as compared with injection of vehicle (96.3+/-33.2%, n=5). CONCLUSIONS: Inhibition of SK channels prolongs atrial effective refractory period without affecting QT interval and prevents and terminates AF ex vivo and in vivo, thus offering a promising new therapeutic opportunity in the treatment of AF.


Assuntos
Antiarrítmicos/farmacologia , Fibrilação Atrial/tratamento farmacológico , Fibrilação Atrial/prevenção & controle , Miocárdio/metabolismo , Bloqueadores dos Canais de Potássio/farmacologia , Canais de Potássio Cálcio-Ativados/antagonistas & inibidores , 1-Naftilamina/análogos & derivados , 1-Naftilamina/farmacologia , Acetilcolina/farmacologia , Potenciais de Ação , Alcanos/farmacologia , Animais , Fibrilação Atrial/metabolismo , Fibrilação Atrial/fisiopatologia , Estimulação Cardíaca Artificial , Relação Dose-Resposta a Droga , Eletrocardiografia , Feminino , Cobaias , Técnicas In Vitro , Masculino , Perfusão , Canais de Potássio Cálcio-Ativados/metabolismo , Piridinas/farmacologia , Compostos de Quinolínio/farmacologia , Coelhos , Ratos , Ratos Sprague-Dawley , Tiazóis/farmacologia , Fatores de Tempo
20.
J Cardiovasc Pharmacol ; 54(2): 169-77, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19568177

RESUMO

The ionic current responsible for terminating the action potential (AP), and thereby in part determining the AP duration (APD), is the potassium current (IK), consisting of primarily two components: a rapidly (IKr) and a slowly (IKs) activating delayed rectifier potassium current. The aim of this study was to evaluate potential antiarrhythmic effects of compound induced IKs activation using the benzodiazepine L-364,373 (R-L3). Ventricular myocytes from guinea pigs were isolated and whole-cell current clamping was performed at 35 degrees C. It was found that 1 microM R-L3 significantly reduced the APD90 at pacing frequencies of 1, 2, and 4 Hz when compared to control (40 +/- 6%, 22 +/- 2%, and 32 +/- 2%, respectively). The reduction of APD90 was accompanied by a reduced triangulation (given as APD30-90) when compared to control at all pacing frequencies (62 +/- 7 ms vs. 41 +/- 3 ms, 55 +/- 5 ms vs. 35 +/- 6 ms, and 45 +/- 4 ms vs. 32 +/- 2 ms, at 1 Hz, 2 Hz, and 4 Hz, respectively). The abbreviated APDs also resulted in a reduction in the relative refractory period, and no direct protection against pacing induced early after-depolarizations (EAD) could be observed. However, an increase in repolarizing capacity was seen with 1 microM R-L3, as more complete repolarization of the AP was achieved before EADs could be elicited. Finally, a functional demonstration of the repolarization reserve revealed that increased IKs can counteract a pharmacologically reduced IKr. In conclusion, pharmacological activation of IKs possesses both pro- and antiarrhythmic characters. The most prominent antiarrhythmic propensity is the ability for IKs activation to rescue a cellular model of long QT type 2.


Assuntos
Antiarrítmicos/farmacologia , Benzodiazepinas/farmacologia , Síndrome do QT Longo/tratamento farmacológico , Miócitos Cardíacos/efeitos dos fármacos , Animais , Canais de Potássio de Retificação Tardia/efeitos dos fármacos , Canais de Potássio de Retificação Tardia/metabolismo , Modelos Animais de Doenças , Eletrocardiografia , Eletrofisiologia , Feminino , Cobaias , Ventrículos do Coração/metabolismo , Síndrome do QT Longo/induzido quimicamente , Síndrome do QT Longo/fisiopatologia , Miócitos Cardíacos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...