Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Pharm ; : 124421, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38972524

RESUMO

In this paper, a hydrogel material with efficient antibacterial, hemostatic, self-healing, and injectable properties was designed for the treatment of diabetic wounds. Firstly, quaternary ammonium salts were grafted with oxidized sodium alginate, and quaternized oxidized sodium alginate (QOSA) was synthesized. Due to the introduction of quaternary ammonium group it has antibacterial and hemostatic effects, at the same time, due to the presence of aldehyde group it can be reacted with carboxymethyl chitosan (CMCS) to form a hydrogel through the Schiff base reaction. Furthermore, deer antler blood polypeptide (DABP) was loaded into the hydrogel (QOSA&CMCS&DABP), showing good swelling ratio and bacteriostatic effect. In vitro and in vivo experiments demonstrated that the hydrogel not only quickly inhibited hepatic hemorrhage in mice and reduced coagulation index and clotting time in vitro, but also significantly enhanced collagen deposition at the wound site, accelerating wound healing. This demonstrates that the multifunctional hydrogel materials (QOSA&CMCS&DABP) have promising applications in the acceleration of skin wound healing and antibacterial promotion.

2.
Int J Biol Macromol ; 273(Pt 2): 133040, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38857721

RESUMO

Liver injury caused by type-II diabetes mellitus (DM) is a significant public-health concern worldwide. We used chitosan (CS) to modify dihydromyricetin (DHM)-loaded liposomes (DL) through charge interaction. The effect of CS-modified DL (CDL) on liver injury in mice suffering from DM was investigated in vivo and in vitro. CDL exhibited superior antioxidant capacity and stability. Pharmacokinetic analyses revealed a 3.23- and 1.92-fold increase in the drug concentration-time curve (953.60 ± 122.55 ng/mL/h) in the CDL-treated group as opposed to the DHM-treated group (295.15 ± 25.53 ng/mL/h) and DL-treated group (495.31 ± 65.21 ng/mL/h). The maximum drug concentration in blood (Tmax) of the CDL group saw a 2.26- and 1.21-fold increase compared with that in DHM and DL groups. We observed a 1.49- and 1.31-fold increase in the maximum drug concentration in blood (Cmax) in the CDL group compared with that in DHM and DL groups. Western blotting suggested that CDL could alleviate liver injury in mice suffering from DM by modulating inflammatory factors and the transforming growth factor-ß1/Smad2/Smad3 signaling pathway. In conclusion, modification of liposomes using CS is a viable approach to address the limitations of conventional liposomes and insoluble drugs.


Assuntos
Quitosana , Flavonóis , Lipossomos , Animais , Quitosana/química , Quitosana/farmacologia , Lipossomos/química , Flavonóis/farmacologia , Flavonóis/administração & dosagem , Camundongos , Masculino , Diabetes Mellitus Experimental/tratamento farmacológico , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/lesões , Fígado/patologia , Antioxidantes/farmacologia , Antioxidantes/química , Diabetes Mellitus Tipo 2/tratamento farmacológico , Humanos
3.
Int J Biol Macromol ; 268(Pt 2): 131670, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38643919

RESUMO

Bacterial infection, hyperinflammation and hypoxia, which can lead to amputation in severe cases, are frequently observed in diabetic wounds, and this has been a critical issue facing the repair of chronic skin injuries. In this study, a copper-based MOF (TAX@HKUST-1) highly loaded with taxifolin (TAX) with a drug loading of 41.94 ± 2.60 % was prepared. In addition, it has excellent catalase activity, and by constructing an oxygen-releasing hydrogel (PTH) system with calcium peroxide (CaO2), it can be used as a nano-enzyme to promote the generation of oxygen from hydrogen peroxide (H2O2) to provide sufficient oxygen to the wound, and at the same time, solve the problem of the oxidative stress damage caused by excess H2O2 to the cells during the oxygen-releasing process. On the other hand, TAX and HKUST-1 in PTH synergistically promoted antimicrobial and anti-oxidative stress properties, and the bacterial inhibition rate against Staphylococcus aureus and Escherichia coli reached 90 %. In vivo experiments have shown that PTH hydrogel is able to treat diabetic skin repair by inhibiting the expression of inflammation-related proteins and promoting epidermal neogenesis, angiogenesis and collagen deposition.


Assuntos
Alginatos , Quitosana , Hidrogéis , Álcool de Polivinil , Cicatrização , Cicatrização/efeitos dos fármacos , Hidrogéis/química , Hidrogéis/farmacologia , Alginatos/química , Alginatos/farmacologia , Quitosana/química , Quitosana/análogos & derivados , Quitosana/farmacologia , Animais , Álcool de Polivinil/química , Antibacterianos/farmacologia , Antibacterianos/química , Staphylococcus aureus/efeitos dos fármacos , Quercetina/farmacologia , Quercetina/química , Quercetina/análogos & derivados , Diabetes Mellitus Experimental/tratamento farmacológico , Humanos , Escherichia coli/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Ratos , Camundongos
4.
Carbohydr Polym ; 336: 122115, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38670750

RESUMO

To alleviate skull defects and enhance the biological activity of taxifolin, this study utilized the thin-film dispersion method to prepare paclitaxel liposomes (TL). Thiolated chitosan (CSSH)-modified TL (CTL) was synthesized through charge interactions. Injectable hydrogels (BLG) were then prepared as hydrogel scaffolds loaded with TAX (TG), TL (TLG), and CTL (CTLG) using a Schiff base reaction involving oxidized dextran and carboxymethyl chitosan. The study investigated the bone reparative properties of CTLG through molecular docking, western blot techniques, and transcriptome analysis. The particle sizes of CTL were measured at 248.90 ± 14.03 nm, respectively, with zeta potentials of +36.68 ± 5.43 mV, respectively. CTLG showed excellent antioxidant capacity in vitro. It also has a good inhibitory effect on Escherichia coli and Staphylococcus aureus, with inhibition rates of 93.88 ± 1.59 % and 88.56 ± 2.83 % respectively. The results of 5-ethynyl-2 '-deoxyuridine staining, alkaline phosphatase staining and alizarin red staining showed that CTLG also had the potential to promote the proliferation and differentiation of mouse embryonic osteoblasts (MC3T3-E1). The study revealed that CTLG enhances the expression of osteogenic proteins by regulating the Wnt signaling pathway, shedding light on the potential application of TAX and bone regeneration mechanisms.


Assuntos
Proliferação de Células , Quitosana , Hidrogéis , Lipossomos , Osteoblastos , Quercetina , Quercetina/análogos & derivados , Crânio , Via de Sinalização Wnt , Animais , Quitosana/análogos & derivados , Quitosana/química , Quitosana/farmacologia , Quercetina/farmacologia , Quercetina/química , Lipossomos/química , Via de Sinalização Wnt/efeitos dos fármacos , Osteoblastos/efeitos dos fármacos , Hidrogéis/química , Hidrogéis/farmacologia , Proliferação de Células/efeitos dos fármacos , Camundongos , Crânio/efeitos dos fármacos , Crânio/patologia , Crânio/metabolismo , Ratos , Regeneração Óssea/efeitos dos fármacos , Ratos Sprague-Dawley , Osteogênese/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Compostos de Sulfidrila/química , Compostos de Sulfidrila/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Diferenciação Celular/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Masculino , Simulação de Acoplamento Molecular
5.
Heliyon ; 10(6): e28283, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38524603

RESUMO

Abscisic acid (ABA) is a plant hormone with various biological activities. Aging is a natural process accompanied by cognitive and physiological decline, and aging and its associated diseases pose a serious threat to public health, but its mechanisms remain insufficient. Therefore, the purpose of this study was to investigate the ameliorative effects of ABA on d-galactose (D-Gal)-induced aging in mice and to delve into its molecular mechanisms. Aging model was es-tablished by theintraperitoneal injection of D-Gal. We evaluated the oxidative stress by measuring superoxide dismutase (SOD), malondialdehyde (MDA), catalase (CAT) levels in serum. Proteins content in brain were determined by Western blot. D-Gal-induced brain damage was monitored by measuring the levels of acetylcholinesterase (AChE) content and hematoxylin-eosin staining (H&E). To evaluate the effects of ABA on aging, we measured the gut microbiota. The results demonstrated that ABA increased SOD, CAT and AChE, decreased MDA level. H&E staining showed that ABA could improve D-Gal-induced damage. In addition, ABA regulated the B-cell-lymphoma-2 (BCL-2) family and Phosphatidylinositol 3-kinase/Protein kinase B (PI3K/AKT) signaling pathway, while further regulating the acetylation of p53 protein by modulating the AMPK pathway and activating SIRT1 protein, thereby inhibiting the apoptosis of brain neurons and thus regulating the aging process. Interestingly, ABA improved the ratio of intestinal bacteria involved in regulating multiple metabolic pathways in the aging process, such as Bacteroides, Firmicutes, Lactobacillus and Ak-kermansia. In conclusion, the present study suggests that ABA may be responsible for improving and delaying the aging process by enhancing antioxidant activity, anti-apoptosis and regulating intestinal flora.

6.
Molecules ; 29(5)2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38474556

RESUMO

Chemotherapy is a well-established method for treating cancer, but it has limited effectiveness due to its high dosage and harmful side effects. To address this issue, researchers have explored the use of photothermal agent nanoparticles as carriers for precise drug release in vivo. In this study, three different sizes of polydopamine nanoparticles (PDA-1, PDA-2, and PDA-3) were synthesized and evaluated. PDA-2 was selected for its optimal size, encapsulation rate, and drug loading rate. The release of the drug from PDA-2@TAX was tested at different pH and NIR laser irradiation levels. The results showed that PDA-2@TAX released more readily in an acidic environment and exhibited a high photothermal conversion efficiency when exposed to an 808 nm laser. In vitro experiments on ovarian cancer cells demonstrated that PDA-2@TAX effectively inhibited cell proliferation, highlighting its potential for synergistic chemotherapy-photothermal treatment.


Assuntos
Hipertermia Induzida , Indóis , Nanopartículas , Neoplasias Ovarianas , Polímeros , Quercetina/análogos & derivados , Humanos , Feminino , Fototerapia/métodos , Hipertermia Induzida/métodos , Neoplasias Ovarianas/tratamento farmacológico , Doxorrubicina/farmacologia
7.
Molecules ; 29(3)2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38338482

RESUMO

Phlorizin, as a flavonoid from a wide range of sources, is gradually becoming known for its biological activity. Phlorizin can exert antioxidant effects by regulating the IL-1ß/IKB-α/NF-KB signaling pathway. At the same time, it exerts its antibacterial activity by reducing intracellular DNA agglutination, reducing intracellular protein and energy synthesis, and destroying intracellular metabolism. In addition, phlorizin also has various pharmacological effects such as antiviral, antidiabetic, antitumor, and hepatoprotective effects. Based on domestic and foreign research reports, this article reviews the plant sources, extraction, and biological activities of phlorizin, providing a reference for improving the clinical application of phlorizin.


Assuntos
Glucosídeos , Florizina , Florizina/farmacologia , Florizina/metabolismo , Antioxidantes/farmacologia , Flavonoides , Hipoglicemiantes/farmacologia
8.
Int J Biol Macromol ; 262(Pt 1): 129937, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38325683

RESUMO

Diabetic wounds are typically chronic wounds and the healing process is limited by problems such as high blood glucose levels, bacterial infections, and other issues that make wound healing difficult. Designing drug-loaded wound dressings is an effective way to promote diabetic wound healing. In this study, we developed an SA/PVA nanofiber (SPS) containing Shikonin (SK) for the treatment of diabetic wounds. The prepared nanofibers were uniform in diameter, had good hydrophilicity and high water vapor permeability, and effectively promoted gas exchange between the wound site and the outside world. The results of in vitro experiments showed that SPS was effective in antimicrobial, antioxidant, and biocompatible. In vivo tests showed that the wound healing rate of mice treated with SPS reached 85.5 %. Immunohistochemical staining results showed that SPS was involved in the diabetic wound healing process through the up-regulation of growth factors (CD31, HIF-1α) and the down-regulation of inflammatory factors (CD68). Western blotting experiments showed that SPS attenuated the inflammation through the inhibition of the IκBα/NF-κB signaling pathway. These results suggest that SPS is a promising candidate for future clinical application of chronic wound dressings.


Assuntos
Diabetes Mellitus , Nanofibras , Naftoquinonas , Animais , Camundongos , Álcool de Polivinil/farmacologia , Alginatos/farmacologia , Cicatrização , Antibacterianos/farmacologia
9.
Int J Biol Macromol ; 262(Pt 1): 130079, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38340939

RESUMO

Due to impaired immune function, diabetic wounds are highly susceptible to the development of excessive inflammatory responses and prolonged recurrent bacterial infections that impede diabetic wound healing. Therefore, it is necessary to design and develop a wound dressing that controls bacterial infection and inhibits excessive inflammatory response. In this study, hyaluronic acid (HA) was modified using dopamine (DA). Subsequently, cordycepin (COR) was loaded into dopamine-modified hyaluronic acid (OHDA)/gelatin (GEL) nanofiber wound dressing by electrostatic spinning technique. The constructed COR/OHDA/GEL nanofiber membrane has good thermal stability, hydrophilicity, and air permeability. In vitro experiments showed that the obtained COR/OHDA/GEL nanofiber membranes had good antimicrobial efficacy (S. aureus: 95.60 ± 0.99 %, E. coli: 71.17 ± 6.87 %), antioxidant activity (>90 %), and biocompatibility. In vivo experiments showed that COR/OHDA/GEL nanofiber membranes could promote wound tissue remodeling, collagen deposition, and granulation tissue regeneration. Western blot experiments showed that COR/OHDA/GEL nanofibrous membranes could inhibit the excessive inflammatory response of wounds through the TLR4/NF-κB signaling pathway. Therefore, COR/OHDA/GEL nanofiber membranes could promote diabetic wound healing by modulating the inflammatory response. The results showed that the designed nanofiber wound dressing is expected to provide a new strategy for treating chronic wounds.


Assuntos
Desoxiadenosinas , Diabetes Mellitus , Nanofibras , Humanos , Gelatina , NF-kappa B , Ácido Hialurônico , Dopamina , Receptor 4 Toll-Like , Staphylococcus aureus , Escherichia coli , Cicatrização , Diabetes Mellitus/tratamento farmacológico , Transdução de Sinais , Antibacterianos/farmacologia
10.
Polymers (Basel) ; 16(3)2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38337233

RESUMO

Chitosan is a linear polyelectrolyte with active hydroxyl and amino groups that can be made into chitosan-based hydrogels by different cross-linking methods. Chitosan-based hydrogels also have a three-dimensional network of hydrogels, which can accommodate a large number of aqueous solvents and biofluids. CS, as an ideal drug-carrying material, can effectively encapsulate and protect drugs and has the advantages of being nontoxic, biocompatible, and biodegradable. These advantages make it an ideal material for the preparation of functional hydrogels that can act as wound dressings for skin injuries. This review reports the role of chitosan-based hydrogels in promoting skin repair in the context of the mechanisms involved in skin injury repair. Chitosan-based hydrogels were found to promote skin repair at different process stages. Various functional chitosan-based hydrogels are also discussed.

11.
Int J Biol Macromol ; 263(Pt 1): 130226, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38368971

RESUMO

With the improvement of modern living standards, the challenge of diabetic wound healing has significantly impacted the public health system. In this study, our objective was to enhance the bioactivity of taxifolin (TAX) by encapsulating it in liposomes using a thin film dispersion method. Additionally, polyvinyl alcohol/carboxymethyl chitosan-based hydrogels were prepared through repeated freeze-thawing. In vitro and in vivo experiments were conducted to investigate the properties of the hydrogel and its effectiveness in promoting wound healing in diabetic mice. The results of the experiments revealed that the encapsulation efficiency of taxifolin liposomes (TL) was 89.80 ± 4.10 %, with a drug loading capacity of 17.58 ± 2.04 %. Scanning electron microscopy analysis demonstrated that the prepared hydrogels possessed a porous structure, facilitating gas exchange and the absorption of wound exudates. Furthermore, the wound repair experiments in diabetic mice showed that the TL-loaded hydrogels (TL-Gels) could expedite wound healing by suppressing the inflammatory response and promoting the expression of autophagy-related proteins. Overall, this study highlights that TL-Gels effectively reduce wound healing time by modulating the inflammatory response and autophagy-related protein expression, thus offering promising prospects for the treatment of hard-to-heal wounds induced by diabetes.


Assuntos
Quitosana , Diabetes Mellitus Experimental , Quercetina/análogos & derivados , Camundongos , Animais , Quitosana/química , Lipossomos/farmacologia , Diabetes Mellitus Experimental/tratamento farmacológico , Álcool de Polivinil/química , Cicatrização , Hidrogéis/química , Inflamação , Autofagia
12.
Int J Biol Macromol ; 263(Pt 1): 130256, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38368995

RESUMO

The current clinical treatment of diabetic wounds is still based on oxygen therapy, and the slow healing of skin wounds due to hypoxia has always been a key problem in the repair of chronic skin injuries. To overcome this problem, the oxygen-producing matrix CaO2NPS based on the temperature-sensitive dihydromyricetin-loaded hydrogel was prepared. In vitro activity showed that the dihydromyricetin (DHM) oxygen-releasing temperature-sensitive hydrogel composite (DHM-OTH) not only provided a suitable oxygen environment for cells around the wound to survive but also had good biocompatibility and various biological activities. By constructing a T2D wound model, we further investigated the repairing effect of DHM-OTH on chronic diabetic skin wounds and the mechanisms involved. DHM-OTH was able to reduce inflammatory cells and collagen deposition and promote angiogenesis and cell proliferation for diabetic wound healing. These in vitro and in vivo data suggest that DHM-OTH accelerates diabetic wound repair as a novel method to efficiently deliver oxygen to wound tissue, providing a promising strategy to improve diabetic wound healing.


Assuntos
Quitosana , Diabetes Mellitus Experimental , Flavonóis , Animais , Humanos , Hidrogéis/farmacologia , Hidrogéis/uso terapêutico , Poloxâmero/farmacologia , Quitosana/farmacologia , Cicatrização , Oxigênio , Diabetes Mellitus Experimental/tratamento farmacológico , Bandagens
13.
Int J Biol Macromol ; 258(Pt 2): 129118, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38163502

RESUMO

Colitis can significantly impact daily life. This study utilized DSS to induce acute colitis in mice and examined the regulatory effect of arabinogalactan (AG). The findings demonstrated that AG intake effectively alleviated the phenotype of DSS-induced colitis in mice and protected against small intestine damage. Furthermore, AG suppressed the secretion of pro-inflammatory factors TNF-α and IL-1ß, while promoting the secretion of anti-inflammatory factor IL-10. It also inhibited the secretion of LPS in serum and MPO in colon tissue. Additionally, AG regulated the NF-κB/MAPK/PPARγ signaling pathway and inhibited the NLRP3 inflammasome signaling pathway, thereby ameliorating DSS-induced colitis inflammation in mice. AG also influenced the metabolism of short-chain fatty acids, particularly butyrate, in the intestinal tract of mice. Moreover, AG modulated and enhanced the composition of intestinal flora in mice with colitis, increasing the diversity of dominant flora and promoting the growth of beneficial bacteria. These results highlight the protective effects of arabinogalactan against colitis and its potential applications in the food industry.


Assuntos
Colite Ulcerativa , Colite , Galactanos , Microbioma Gastrointestinal , Animais , Camundongos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Colite/induzido quimicamente , Transdução de Sinais , NF-kappa B/metabolismo , Sulfato de Dextrana/efeitos adversos , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças
14.
Int J Biol Macromol ; 259(Pt 2): 129356, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38218300

RESUMO

Various types of skin wounds pose challenges in terms of healing and susceptibility to infection, which can have a significant impact on physical and mental well-being, and in severe cases, may result in amputation. Conventional wound dressings often fail to provide optimal support for these wounds, thereby impeding the healing process. As a result, there has been considerable interest in the development of multifunctional polymer matrix hydrogel scaffolds for wound healing. This review offers a comprehensive review of the characteristics of polysaccharide-based hydrogel scaffolds, as well as their applications in different types of wounds. Additionally, it evaluates the advantages and disadvantages associated with various types of multifunctional polymer and polysaccharide-based hydrogel scaffolds. The objective is to provide a theoretical foundation for the utilization of multifunctional hydrogel scaffolds in promoting wound healing.


Assuntos
Amputação Cirúrgica , Hidrogéis , Hidrogéis/farmacologia , Polímeros , Polissacarídeos/farmacologia , Cicatrização , Antibacterianos
15.
Int J Biol Macromol ; 259(Pt 1): 129124, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38176509

RESUMO

The wound of diabetes has long-term excessive inflammation leading to wound fibrosis and scar formation. In the process of diabetic wound healing, good wound dressing is required for intervention. In this study, we designed a dihydromyricetin-loaded hydrogel (PCD) based on phellinus igniarius polysaccharide and l-arginine modified chitosan as an alternative material to promote diabetes wound healing. PCD had a uniform porous structure, good thermal stability, excellent mechanical properties, high water absorption, excellent antioxidant and anti-inflammatory activities and good biocompatibility and biodegradability. In addition, in the full-thickness skin trauma model of diabetes, PCD significantly inhibited the JNK signaling pathway to reduce inflammatory response, and significantly down-regulated the expression of TGF-ß1, Smad2, Smad3 and Smad4 to directly inhibit the TGF-ß/Smad signaling pathway to accelerate wound healing and slow down scar formation in diabetes mice. Therefore, PCD has a broad application prospect in promoting diabetes wound healing.


Assuntos
Quitosana , Diabetes Mellitus Experimental , Flavonóis , Phellinus , Camundongos , Animais , Quitosana/farmacologia , Quitosana/química , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Cicatriz , Hidrogéis , Transdução de Sinais
16.
Int J Biol Macromol ; 259(Pt 1): 129160, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38181908

RESUMO

The healing of wounds in diabetics is commonly delayed by recurring infections and persistent inflammation at the wound site. For this reason, we conducted a study using the electrospinning technique to create nanofiber membranes consisting of polyvinylpyrrolidone/chitosan (PVP/CS) and incorporated dihydromyricetin (DHM) into them. Infrared Fourier transform spectroscopy and scanning electron microscopy were used to analyze the nanofiber membrane. Experimental results in vitro have shown that PVP/CS/DHM has exceptional properties such as hydrophilicity, porosity, water vapor transport rate, antioxidant capacity, and antibacterial activity. Moreover, our study has demonstrated that the application of PVP/CS/DHM can significantly improve wound healing in diabetic mice. After an 18-day treatment period, a remarkable wound closure rate of 88.63 ± 1.37 % was achieved. The in vivo experiments revealed that PVP/CS/DHM can promote diabetic wound healing by suppressing the activation of TLR4/MyD88/NF-κB signaling pathway and enhancing autophagy-related protein as well as CD31 and HIF-1α expression in skin tissues. This study showed that PVP/CS/DHM is a promising wound dressing.


Assuntos
Quitosana , Diabetes Mellitus Experimental , Flavonóis , Nanofibras , Camundongos , Animais , Quitosana/química , Povidona , Diabetes Mellitus Experimental/tratamento farmacológico , Nanofibras/química , Cicatrização , Antibacterianos/química , Anti-Inflamatórios
17.
Biomed Pharmacother ; 170: 116076, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38147738

RESUMO

Diabetes is an epidemic in contemporary society, which seriously affects people's health. Therefore, it is imperative to develop a multifunctional wound dressing that can expedite the healing of diabetic wounds. In this study, quaternized oxidized sodium alginate (QOSA) and carboxymethyl chitosan (CMCS) formed hydrogel through Schiff base reaction, and the composite hydrogel was prepared by adding the antioxidant activity of deer antler blood polypeptide (D). The hydrogel exhibits favorable attributes, including a high swelling ratio, biocompatibility, and noteworthy antioxidant, antibacterial, and hemostatic properties. Finally, it was used to evaluate its effectiveness in repairing diabetic wounds. Upon evaluation, this hydrogel can effectively promote diabetic wound healing. It facilitates cell proliferation at the wound site, mitigates inflammatory responses, and enhances the expression of growth factors at the wound site. This suggests that this hydrogel holds significant promise as an ideal candidate for advanced wound dressings.


Assuntos
Chifres de Veado , Quitosana , Cervos , Diabetes Mellitus , Animais , Humanos , Materiais Biocompatíveis/farmacologia , Hidrogéis/farmacologia , Peptídeos , Antibacterianos , Antioxidantes
18.
Molecules ; 28(24)2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38138440

RESUMO

Currently, skin injuries have a serious impact on people's lives and socio-economic stress. Shikonin, a naphthoquinone compound derived from the root of the traditional Chinese medicine Shikonin, has favorable biological activities such as anti-inflammatory, antibacterial, immunomodulatory, anticancer, and wound-healing-promoting pharmacological activities. It has been reported that Shikonin can be used for repairing skin diseases due to its wide range of pharmacological effects. Moreover, the antimicrobial activity of Shikonin can play a great role in food and can also reduce the number of pathogenic bacteria in food. This paper summarizes the research on the pharmacological effects of Shikonin in recent years, as well as research on the mechanism of action of Shikonin in the treatment of certain skin diseases, to provide certain theoretical references for the clinical application of Shikonin, and also to provides research ideas for the investigation of the mechanism of action of Shikonin in other skin diseases.


Assuntos
Naftoquinonas , Dermatopatias , Humanos , Anti-Inflamatórios/farmacologia , Naftoquinonas/farmacologia , Naftoquinonas/uso terapêutico , Medicina Tradicional Chinesa , Dermatopatias/tratamento farmacológico
19.
Molecules ; 28(19)2023 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-37836731

RESUMO

Skeletons play an important role in the human body, and can form gaps of varying sizes once damaged. Bone defect healing involves a series of complex physiological processes and requires ideal bone defect implants to accelerate bone defect healing. Traditional grafts are often accompanied by issues such as insufficient donors and disease transmission, while some bone defect implants are made of natural and synthetic polymers, which have characteristics such as good porosity, mechanical properties, high drug loading efficiency, biocompatibility and biodegradability. However, their antibacterial, antioxidant, anti-inflammatory and bone repair promoting abilities are limited. Flavonoids are natural compounds with various biological activities, such as antitumor, anti-inflammatory and analgesic. Their good anti-inflammatory, antibacterial and antioxidant activities make them beneficial for the treatment of bone defects. Several researchers have designed different types of flavonoid-loaded polymer implants for bone defects. These implants have good biocompatibility, and they can effectively promote the expression of angiogenesis factors such as VEGF and CD31, promote angiogenesis, regulate signaling pathways such as Wnt, p38, AKT, Erk and increase the levels of osteogenesis-related factors such as Runx-2, OCN, OPN significantly to accelerate the process of bone defect healing. This article reviews the effectiveness and mechanism of biomaterials loaded with flavonoids in the treatment of bone defects. Flavonoid-loaded biomaterials can effectively promote bone defect repair, but we still need to improve the overall performance of flavonoid-loaded bone repair biomaterials to improve the bioavailability of flavonoids and provide more possibilities for bone defect repair.


Assuntos
Materiais Biocompatíveis , Flavonoides , Humanos , Materiais Biocompatíveis/farmacologia , Flavonoides/farmacologia , Antioxidantes/farmacologia , Osteogênese , Antibacterianos/farmacologia , Anti-Inflamatórios/farmacologia , Regeneração Óssea
20.
Molecules ; 28(19)2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37836832

RESUMO

Skin is a barrier to maintaining the stability of the human environment and preventing the invasion of pathogens. When skin tissue is exposed to the external environment, it will inevitably develop defects due to trauma, injury, burns, ulcers, surgery, and chronic diseases. Rapid skin repair is the key to reducing infection, relieving pain, and improving quality of life. Dihydroquercetin is a kind of flavonoid that has a wide range of pharmacological activities and can improve skin repair, skin inflammation, skin cancer, and so on. In this paper, the application of dihydroquercetin in medical dressings and the research progress in the treatment of skin-related diseases are reviewed, so as to provide reference for further developing dihydroquercetin as a drug for the treatment of skin diseases.


Assuntos
Qualidade de Vida , Dermatopatias , Humanos , Quercetina/farmacologia , Quercetina/uso terapêutico , Pele , Dermatopatias/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...