Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Microbiol ; 15: 1328289, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38333582

RESUMO

Introduction: Citrus chlorotic dwarf-associated virus (CCDaV) is an economically important citrus virus associated with leaf curling, deformation, and chlorosis found in China. Plants have evolved RNA silencing to defend against viral infections; however, the mechanism by which CCDaV suppresses RNA silencing in citrus remains unknown. Methods: Six proteins encoded by CCDaV were ectopically expressed in Nicotiana benthamiana 16c using the pCHF3 vector to identify RNA-silencing suppression activities. Results: V2 protein encoded by CCDaV suppressed local RNA silencing and systemic RNA silencing triggered by GFP RNA, but did not impede short-distance movement of the RNA silencing signal in N. benthamiana 16c. GFP fluorescence observations showed that the ability of V2 protein to suppress RNA silencing was weaker than tomato bushy stunt virus P19. Deletion analysis showed that the putative nuclear localization signal (NLS, 25-54 aa) was involved in the RNA silencing suppression activity of V2 protein. Furthermore, V2 protein cannot block dsRNA-triggered RNA silencing. The subcellular localization assay suggested that V2 protein was localized to nucleus of N. benthamiana. Conclusion: Overall, the results of this study demonstrate that CCDaV-V2 acts as an activity of silencing suppression. This is the first reported RNA-silencing suppressor encoded by Citlodavirus and will be valuable in revealing the molecular mechanism of CCDaV infection.

2.
Adv Mater ; 35(34): e2204908, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36877955

RESUMO

Valleytronics in 2D transition metal dichalcogenides has raised a great impact in nanophotonic information processing and transport as it provides the pseudospin degree of freedom for carrier control. The imbalance of carrier occupation in inequivalent valleys can be achieved by external stimulations such as helical light and electric field. With metasurfaces, it is feasible to separate the valley exciton in real space and momentum space, which is significant for logical nanophotonic circuits. However, the control of valley-separated far-field emission by a single nanostructure is rarely reported, despite the fact that it is crucial for subwavelength research of valley-dependent directional emission. Here, it is demonstrated that the electron beam permits the chirality-selective routing of valley photons in a monolayer WS2 with Au nanostructures. The electron beam can locally excite valley excitons and regulate the coupling between excitons and nanostructures, hence controlling the interference effect of multipolar electric modes in nanostructures. Therefore, the separation degree can be modified by steering the electron beam, exhibiting the capability of subwavelength control of valley separation. This work provides a novel method to create and resolve the variation of valley emission distribution in momentum space, paving the way for the design of future nanophotonic integrated devices.

3.
Nature ; 615(7950): 56-61, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36859579

RESUMO

Correlating atomic configurations-specifically, degree of disorder (DOD)-of an amorphous solid with properties is a long-standing riddle in materials science and condensed matter physics, owing to difficulties in determining precise atomic positions in 3D structures1-5. To this end, 2D systems provide insight to the puzzle by allowing straightforward imaging of all atoms6,7. Direct imaging of amorphous monolayer carbon (AMC) grown by laser-assisted depositions has resolved atomic configurations, supporting the modern crystallite view of vitreous solids over random network theory8. Nevertheless, a causal link between atomic-scale structures and macroscopic properties remains elusive. Here we report facile tuning of DOD and electrical conductivity in AMC films by varying growth temperatures. Specifically, the pyrolysis threshold temperature is the key to growing variable-range-hopping conductive AMC with medium-range order (MRO), whereas increasing the temperature by 25 °C results in AMC losing MRO and becoming electrically insulating, with an increase in sheet resistance of 109 times. Beyond visualizing highly distorted nanocrystallites embedded in a continuous random network, atomic-resolution electron microscopy shows the absence/presence of MRO and temperature-dependent densities of nanocrystallites, two order parameters proposed to fully describe DOD. Numerical calculations establish the conductivity diagram as a function of these two parameters, directly linking microstructures to electrical properties. Our work represents an important step towards understanding the structure-property relationship of amorphous materials at the fundamental level and paves the way to electronic devices using 2D amorphous materials.

4.
Sensors (Basel) ; 23(1)2023 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-36617102

RESUMO

Magnetic Barkhausen noise (MBN), sensitive to the microstructure of materials, can be applied in the surface decarburization depth detection of ferromagnetic specimens. However, the effects of core microstructures on the determination results of decarburization depth have not been explored. In this study, MBN was employed to evaluate the magnetic properties of the decarburized 60Si2Mn spring steels with martensitic and pearlitic core microstructures. Spring steel samples were austenitized at different times to generate different decarburization depths. Seven magnetic features were extracted from the MBN butterfly profiles. We used the variation coefficient, linear correlation coefficient, and normalized sensitivity to discuss the influence of the core microstructures on these seven features. The different core microstructures led to a large difference in the ability of MBN features to characterize the decarburization layer depth. However, three features of MBN butterfly profiles demonstrated an approximately linear dependency (linear correlation coefficient > 94%) on surface decarburization depth and monotonically increased with the increase in depth in both core microstructures of spring steels.


Assuntos
Imãs , Aço , Fenômenos Físicos , Estações do Ano , Fenômenos Magnéticos
5.
Front Plant Sci ; 13: 1041742, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36507391

RESUMO

Environmental filtering (EF) and dispersal filtering (DF) are widely known to shape plant community assembly. Particularly in arid and semi-arid mountainous regions, however, it remains unclear whether EF or DF dominate in the community assembly of different life forms or how they interact along elevational gradients. This research aims to reveal how different ecological processes influence herbaceous and woody community assembly and how they respond to various environmental drivers and elevational gradients. Here we integrated taxonomic diversity (TD), phylogenetic diversity (PD), and ecological drivers across an elevational gradient of 1,420 m in the Helan Mountain Nature Reserve, in typical arid and semi-arid areas of China. This study showed that the TD and PD of herbaceous communities significantly increase linearly with changing elevation gradients, while woody 'TD' showed a unimodal pattern, and there was little relationship between woody 'PD' and elevation. Herbaceous species exhibited significant phylogenetic clustering at low elevations, where they were influenced by climate, aspect, and tree cover. However, woody species exhibited random patterns across elevations. Herbaceous and woody species' taxonomic and phylogenetic beta diversity is governed primarily by spatial turnover rather than nestedness. Spatial turnover is caused primarily by EF and DF's combined influence, but their relative importance differs between herbaceous and woody communities. Therefore, we conclude that the responses of herbaceous and woody plants along elevation gradients in the Helan Mountains are decoupled due to their different adaptation strategies to climate factors in the drylands. These findings are important for understanding the assembly mechanisms driving plant communities in dryland under the context of dramatic increases in drought driven by climate warming.

6.
Nat Commun ; 13(1): 6241, 2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36271005

RESUMO

At the interface of van der Waals heterostructures, the crystal symmetry and the electronic structure can be reconstructed, giving rise to physical properties superior to or absent in parent materials. Here by studying a Bernal bilayer graphene moiré superlattice encapsulated by 30°-twisted boron nitride flakes, we report an unprecedented ferroelectric polarization with the areal charge density up to 1013 cm-2, which is far beyond the capacity of a moiré band. The translated polarization ~5 pC m-1 is among the highest interfacial ferroelectrics engineered by artificially stacking van der Waals crystals. The gate-specific ferroelectricity and co-occurring anomalous screening are further visualized via Landau levels, and remain robust for Fermi surfaces outside moiré bands, confirming their independence on correlated electrons. We also find that the gate-specific resistance hysteresis loops could be turned off by the other gate, providing an additional control knob. Furthermore, the ferroelectric switching can be applied to intrinsic properties such as topological valley current. Overall, the gate-specific ferroelectricity with strongly enhanced charge polarization may encourage more explorations to optimize and enrich this novel class of ferroelectricity, and promote device applications for ferroelectric switching of various quantum phenomena.

7.
Nano Lett ; 22(19): 7919-7926, 2022 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-36173038

RESUMO

In transition metal dichalcogenides (TMDs), Ising superconductivity with an antisymmetric spin texture on the Fermi surface has attracted wide interest due to the exotic pairing and topological properties. However, it is not clear whether the Q valley with a giant spin splitting is involved in the superconductivity of heavily doped semiconducting 2H-TMDs. Here by taking advantage of a high-quality monolayer WS2 on hexagonal boron nitride flakes, we report an ionic-gating induced superconducting dome with a record high critical temperature of ∼6 K, accompanied by an emergent nonlinear Hall effect. The nonlinearity indicates the development of an additional high-mobility channel, which (corroborated by first principle calculations) can be ascribed to the population of Q valleys. Thus, multivalley population at K and Q is suggested to be a prerequisite for developing superconductivity. The involvement of Q valleys also provides insights to the spin textured Fermi surface of Ising superconductivity in the large family of transition metal dichalcogenides.

8.
Front Plant Sci ; 13: 979023, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35979078

RESUMO

Carbon (C), nitrogen (N), and phosphorus (P) stoichiometric ratios give valuable insight into ecosystem function. The purpose of the present study is to probe into the C, N, and P stoichiometric characteristics in various organs and their relationships with soil factors of the dominant deciduous conifer plant species (Taxodium ascendens and Taxodium distichum) during afforestation in the riparian zone of Three Gorges Reservoir. The results showed only a small change in the concentration of C in different plant organs and soils. T. ascendens contained mean N and P concentrations of 7.63 and 1.54 g/kg in fine roots, 5.10 and 0.56 g/kg in stems, and 15.48 and 2.30 g/kg in leaves, respectively. Whereas T. distichum had a mean N and P concentration of 7.08 and 1.37 g/kg in fine roots, 4.84 and 0.59 g/kg in stems, and 16.89 and 2.23 g/kg in leaves. The N:P ratios in all organs were below 14, indicating that N may have inhibited tree growth. The fine roots P and N:P of T. distichum were weak plasticity and weak homeostasis, and those of T. ascendens were plasticity and weak plasticity. Their stems and leaves adhere to strict homeostasis. N concentrations were significantly positively related to P concentrations in every tissue (except the stems of T. ascendens), and C concentrations were significantly positively associated with P concentrations in the stems and leaves of T. ascendens and T. distichum (p < 0.05). Likewise, soil P and fine root P were positively associated (p < 0.01). This study contributes to the understanding of deciduous conifer plant stoichiometry. It demonstrates N, P, and N:P stoichiometric homeostasis in T. ascendens and T. distichum, which can withstand flooding and are suitable for vegetation restoration in the hydro-fluctuation zone.

9.
Front Plant Sci ; 13: 955656, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35873999

RESUMO

Natural ecosystems generally include litter decomposition as part of the natural cycle since the material properties and the environment greatly influence the decomposition rate. The invasion of exotic plants alters the species diversity and growth characteristics of plant communities, but its impact on litter decomposition is unknown in the riparian zone. This study examines how invasive plants affect the early stages of litter decomposition and how species richness impacts them. This experiment involved a random litter mixture of exotic (Alternanthera philoxeroides and Bidens pilosa) and native species in the riparian zone of the Three Gorges Dam Reservoir in China. There were 43 species mixture types, with various species richness ranging from 1 to 6. Litterbags were placed in the hydro-fluctuation zone and terrestrial zone, where they decomposed over the course of 55 days. Invasive plants decompose rapidly compared to native plants (35.71% of the remaining mass of the invasive plant). The invasive plant A. philoxeroides has the potential to accelerate native plant decomposition (0.29 of non-added synergetic effect), but Bidens pilosa cannot. Nonetheless, species richness had little effect on the decomposition rate. These effects are dependent upon differences in chemical functional characteristics among the species. The initial traits of the plants, specifically C, N, and C/N, were significantly and linearly correlated with the loss of mixed litter mass and mixing effect strength (P < 0.01). In addition, submergence decomposition conditions reduce the disturbance of invasive plants and predict decomposition rates based on litter characteristics. Invasive plants can therefore impact the material cycle of an ecosystem. There is a need to examine decomposition time, which may also involve considering other factors.

10.
Opt Express ; 30(8): 13238-13251, 2022 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-35472941

RESUMO

Structured illumination microscopy (SIM), a super-resolution technology, has a wide range of applications in life sciences. In this study, we present an electro-optic high-speed phase-shift super-resolution microscopy imaging system including 2D SIM, total internal reflection fluorescence-SIM, and 3D SIM modes. This system uses galvanometers and an electro-optic modulator to flexibly and quickly control the phase and direction of structured illumination patterns. Moreover, its design consists of precise timing for improved acquisition speed and software architecture for real-time reconstruction. The highest acquisition rate achieved was 151 frames/s, while the highest real-time super-resolution reconstruction frame rate achieved was over 25 frames/s.

11.
Nat Nanotechnol ; 17(1): 33-38, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34782776

RESUMO

The growth of wafer-scale single-crystal two-dimensional transition metal dichalcogenides (TMDs) on insulating substrates is critically important for a variety of high-end applications1-4. Although the epitaxial growth of wafer-scale graphene and hexagonal boron nitride on metal surfaces has been reported5-8, these techniques are not applicable for growing TMDs on insulating substrates because of substantial differences in growth kinetics. Thus, despite great efforts9-20, the direct growth of wafer-scale single-crystal TMDs on insulating substrates is yet to be realized. Here we report the successful epitaxial growth of two-inch single-crystal WS2 monolayer films on vicinal a-plane sapphire surfaces. In-depth characterizations and theoretical calculations reveal that the epitaxy is driven by a dual-coupling-guided mechanism, where the sapphire plane-WS2 interaction leads to two preferred antiparallel orientations of the WS2 crystal, and sapphire step edge-WS2 interaction breaks the symmetry of the antiparallel orientations. These two interactions result in the unidirectional alignment of nearly all the WS2 islands. The unidirectional alignment and seamless stitching of WS2 islands are illustrated via multiscale characterization techniques; the high quality of WS2 monolayers is further evidenced by a photoluminescent circular helicity of ~55%, comparable to that of exfoliated WS2 flakes. Our findings offer the opportunity to boost the production of wafer-scale single crystals of a broad range of two-dimensional materials on insulators, paving the way to applications in integrated devices.

12.
Biology (Basel) ; 10(11)2021 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-34827134

RESUMO

Litter decomposition is an important soil nutrient source that promotes vegetation in deteriorated riparian zones worldwide. The periodic submergence and sediment burial effects on two prominent annual herbaceous plants (Echinochloa crusgali and Bidens tripartite) are little known in mega-reservoir settings. Our study focuses on the mass and carbon loss and nutrient release from E. crusgali and B. tripartitle litter and changes in soil properties, which are important for riparian zone rehabilitation in the Three Gorges Dam Reservoir, China. This study adopted the litter bag method to explore the nutrient change characteristics and changes in soil properties at different sediment burial depths under flooding scenarios. Three burial depths (0 cm, 5 cm, and 10 cm) were used for these two plants, and the experiment lasted for 180 days. The results revealed that the litter decay rate was high at first in the incubation experiment, and the nutrient loss rate followed the pattern of K > P > N > C. The relationship between % C remaining and % mass remaining was nearly 1:1, and the total amount of P exhibited a leaching-enrichment-release state in the decomposition process. Nutrients were changed significantly in the soil and overlying water at the first decomposition stage. Still, the total soil nutrient change was insignificant at the end, except for the 10 cm burial of B. tripartitle. Moreover, oxidation-reduction potential was the main factor in the litter decomposition process at different burial depths. This study indicated that sediment deposition reduced litter mass loss, slowed down the release of N and P, and retained more C, but promoted the release of K. Conclusively, in litter decomposition under waterlogging, the total soil nutrient content changed little. However, litter does more to the soil than that. Therefore, it is necessary to study the residual soil litter's continuous output after the water level declines for restoration purposes.

13.
Plants (Basel) ; 10(10)2021 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-34685849

RESUMO

Ecological stoichiometric studies can be useful for managing the deteriorated riparian zones of mega-reservoirs in which nutrients significantly impact the balanced vegetation cover. The present study aims to explore the effects of periodic submergence on the stoichiometric ecological characteristics of carbon (C), nitrogen (N), and phosphorus (P), as well as the growth conditions of two leading conifer species (Taxodium distichum and Taxodium ascendens) in the hydro-fluctuation zone of the Three Gorges Reservoir (TGR) region, China. The stoichiometrical contents of C, N, and P in fine roots, leaves, and branches, and the growth conditions of T. distichum and T. ascendens were measured in July 2019. The results showed that periodic submergence affected the stoichiometric characteristics and growth conditions of these two woody species, and the impact was restrained, but both grew well. The effects of inundation on the C, N, and P ecological stoichiometric characteristics differed in different parts of trees. In general, the C contents showed the following pattern: leaves > branches > fine roots. The N and P content showed the following pattern: leaves > fine roots > branches, while the C/N and C/P ratios showed an opposite trend to that of N and P. The N and P content in all parts of T. distichum (with means of 17.18 and 1.70 g/kg for leaves, 4.80 and 0.57 g/kg for branches, and 6.88 and 1.10 g/kg for fine roots, respectively) and T. ascendens (with means of 14.56 and 1.87 g/kg for leaves, 5.03 and 0.63 g/kg for branches, and 8.17 and 1.66 g/kg for fine roots, respectively) were higher than the national average level (with means of 14.14 and 1.11 g/kg for leaves, 3.04 and 0.31 g/kg for branches, and 4.85 and 0.47 g/kg for fine roots, respectively). Except for N and P contents in the leaves of T. distichum, there was a significant correlation between N and P elements in other parts (p < 0.05). Nevertheless, the N/P ratio (10.15, 8.52, 6.44, and 7.93, 8.12, 5.20 in leaves, branches, and fine roots of T. distichum and T. ascendens, respectively) was lower than the critical ratio of 14. The growth conditions of T. distichum and T. ascendens were significantly negatively correlated with their leaf C contents and significantly positively correlated with their fine root N and P contents. This study showed that T. distichum and T. ascendens could maintain their normal growth needs by properly allocating nutrients between different organs to adapt to the long periodic submergence in the hydro-fluctuation zone of the TGR region.

14.
Sci Total Environ ; 801: 149827, 2021 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-34467924

RESUMO

The construction of dams has caused riparian habitat degradation and ecosystem service loss globally. It is critical to assess the response of riparian plant communities to inundation gradients for their conservation. Recent evidence suggests that plant community assemblages are governed by flooding stress, soil nutrient availability, climate (environmental filtering) and dispersal, speciation, local extinction (dispersal filtering), but it remains unclear which dominates the riparian ecosystem regulated by a dam. Thus, this article aims to elucidate the relative importance of environmental and dispersal filtering to variations in plant communities to understand community assembly mechanisms in riparian ecosystems. Here we used plant community data related to four elevations in the riparian zone of the Three Gorges Dam Reservoir in China to show that species richness and diversity, community height, and the cover of total, annual, and exotic plant categories decreased, while the cover of perennial and native plant groups increased under higher flooding stress. Community composition varied substantially with elevation, and species composition tended to converge with increased inundation, characterized by flood-tolerant species. The community composition underwent stronger environmental filtering at low elevations and stronger dispersal filtering at high elevations, with stronger environmental filtering across riparian ecosystems. Therefore, we conclude that dam inundation drives community assemblages of riparian plants by the combined effects of environmental and dispersal filtering. Still, their relative contribution varies between elevations, and environmental filtering is more important in shaping community assembly. This study is the first to confirm that plant community assembly in the dam-regulated riparian area is determined by both niche-based and stochastic processes. Thus, we highlighted the importance of considering inundation intensity, propagule sources, and river connectivity when implementing restoration projects.


Assuntos
Ecossistema , Plantas , Inundações , Rios , Solo
15.
Nano Lett ; 21(16): 6800-6806, 2021 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-34369798

RESUMO

Ionic liquid gating has proved to be effective in inducing emergent quantum phenomena such as superconductivity, ferromagnetism, and topological states. The electrostatic doping at two-dimensional interfaces relies on ionic motion, which thus is operated at sufficiently high temperature. Here, we report the in situ tuning of quantum phases by shining light on an ionic liquid-gated interface at cryogenic temperatures. The light illumination enables flexible switching of the quantum transition in monolayer WS2 from an insulator to a superconductor. In contrast to the prevailing picture of photoinduced carriers, we find that in the presence of a strong interfacial electric field conducting electrons could escape from the surface confinement by absorbing photons, mimicking the field emission. Such an optical tuning tool in conjunction with ionic liquid gating greatly facilitates continuous modulation of carrier densities and hence electronic phases, which would help to unveil novel quantum phenomena and device functionality in various materials.

16.
Biology (Basel) ; 10(8)2021 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-34440051

RESUMO

Plant and microbiome interactions are necessary for plant nutrient acquisition. However, relatively little is known about the responses of roots, bulk, and rhizosphere soil microbial communities in different artificial vegetation types (woody and herbaceous) in riparian areas of massive dams and reservoirs. Therefore, this study aims to assess such responses at elevations of 165-170 m a.s.l. in the riparian zones of the Three Gorges Dam Reservoir, China. The samples were collected containing the rhizosphere soil, bulk soil, and roots of herbaceous and woody vegetation at different emergence stages in 2018. Then, all the samples were analyzed to quantify the soil properties, bacterial community characteristics, and their interaction in the early and late emergence phases. In different periods, the weight of dominant soil bacteria, including Proteobacteria, Acidobacteria, Actinobacteria, Chloroflexi, and Cyanobacteria, was higher, and their composition was different in the rhizosphere, bulk soil, and endophytes. Moreover, the soil co-occurrence networks indicated that the weight of soil physical properties was higher than chemical properties in the early emergence stage. In contrast, the weight of chemical properties was relatively higher in the late emergence stage. Furthermore, the richness and diversity of the bacterial community were mainly affected by soil organic matter. This study suggests that these herbaceous and woody vegetation are suitable for planting in reservoir areas affected by hydrology and human disturbance in light of soil nutrients and soil microbial communities, respectively. Additionally, these results provide valuable information to inoculate the soil with key microbiota members by applying fertilizers, potentially improving plant health and soil production.

17.
PhytoKeys ; 157: 101-112, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32934449

RESUMO

Oreocharis flavovirens is a new species of Gesneriaceae from Gansu, China and is described and illustrated here. It is morphologically similar to O. glandulosa, O. humilis and O. farreri, but those congeners of this new taxon can be distinguished by several salient characters. A description of O. flavovirens, together with illustrations and photos, are presented.

18.
Environ Sci Pollut Res Int ; 26(28): 29234-29245, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31396866

RESUMO

To conduct a comprehensive ecological analysis on the solid residues derived from the thermal disposal of hyperaccumulator Pteris vittata, this study focused on the behaviors of As and Pb and the characteristics of environmentally persistent free radicals (EPFRs) in the solid residues under different thermal treatment conditions. The analysis results revealed that the concentrations of As in the biochars and bio-slag were approximately 350 and 1100 mg/kg, respectively. Moreover, the concentrations of Pb in the solid residues varied from 34 to 1050 mg/kg. According to the results of the modified BCR sequential extractions, As is more stable in the biochar while Pb is more stable in the combustion slags. In addition, As showed a higher volatilization temperature compared with Pb. The ecological risk assessment indicated that the correlation index between the contamination factor (Cf) of As and the risk index (R2 = 0.995) is considerably larger than the correlation index between the contamination factor of Pb and the risk index (R2 = 0.117), which implies that the pyrolysis method should be selected at priority. Moreover, the EPFR concentrations of the biochar declined by approximately 75 times when the pyrolysis temperature increased from 500 to 600 °C. This behavior indicated that high-temperature pyrolysis (> 600 °C) could simultaneously control both the heavy metal behavior and EPFR concentrations.


Assuntos
Carvão Vegetal/química , Radicais Livres/química , Metais Pesados/análise , Pteris/química , Gerenciamento de Resíduos/métodos , Arsênio/análise , Arsênio/química , Biodegradação Ambiental , Radicais Livres/análise , Chumbo/análise , Chumbo/química , Metais Pesados/química , Pirólise , Fatores de Risco , Poluentes do Solo/análise , Temperatura , Termogravimetria , Volatilização
19.
Phys Chem Chem Phys ; 13(37): 16741-7, 2011 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-21858357

RESUMO

The effect of chiral metal complexes ([Co(en)(3)]I(3)·H(2)O, cis-[CoBr(NH(3))(en)(2)]Br(2), K[Co(edta)]·2H(2)O and [Ru(phen)(3)](PF(6))(2)) on the polymer-bound J-aggregates in aqueous mixtures of pesudoisocyanine (PIC) iodine and poly(acrylic acid, sodium)(PAAS) have been studied by UV-vis absorption, circular dichroism (CD) and fluorescence spectra. At low concentration, the PIC monomers could self-assemble to form supermolecules by binding to each of the COO(-) groups on the polymer chains through electrostatic interactions. After the addition of chiral metal complexes to the formed PIC-PAAS J-aggregates, we found that only the chiral multiple π-conjugated phenanthroline metal complexes could transfer their metal-centered chiral information to the formed J-aggregates. The chiral J-aggregates showed a characteristic induced circular dichroism (ICD) in the visible region of J-band chromophore, and the ICD signals depend on the absolute configuration, concentration of the chiral multiple π-conjugated metal complexes, as well as temperature. More interestingly, the supramolecular chirality of the polymer supported PIC J-aggregates could be memorized even after the addition of an excess opposite chiral complex enantiomers. This is in sharp contrast to the behavior in the high concentrated NaCl induced PIC-J aggregates, in which the optical rotation of a mixture of two enantiomers varies linearly with their ratio.


Assuntos
Cobalto/química , Compostos Organometálicos/química , Quinolinas/química , Rutênio/química , Cátions/química , Estrutura Molecular , Tamanho da Partícula , Estereoisomerismo , Propriedades de Superfície , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...