Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant J ; 118(2): 457-468, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38198228

RESUMO

Carotenoids perform a broad range of important functions in humans; therefore, carotenoid biofortification of maize (Zea mays L.), one of the most highly produced cereal crops worldwide, would have a global impact on human health. PLASTID TERMINAL OXIDASE (PTOX) genes play an important role in carotenoid metabolism; however, the possible function of PTOX in carotenoid biosynthesis in maize has not yet been explored. In this study, we characterized the maize PTOX locus by forward- and reverse-genetic analyses. While most higher plant species possess a single copy of the PTOX gene, maize carries two tandemly duplicated copies. Characterization of mutants revealed that disruption of either copy resulted in a carotenoid-deficient phenotype. We identified mutations in the PTOX genes as being causal of the classic maize mutant, albescent1. Remarkably, overexpression of ZmPTOX1 significantly improved the content of carotenoids, especially ß-carotene (provitamin A), which was increased by ~threefold, in maize kernels. Overall, our study shows that maize PTOX locus plays an important role in carotenoid biosynthesis in maize kernels and suggests that fine-tuning the expression of this gene could improve the nutritional value of cereal grains.


Assuntos
Oxirredutases , Zea mays , Humanos , Oxirredutases/genética , Oxirredutases/metabolismo , Zea mays/genética , Zea mays/metabolismo , Carotenoides/metabolismo , beta Caroteno/metabolismo , Grão Comestível/genética , Grão Comestível/metabolismo , Plastídeos/genética , Plastídeos/metabolismo
2.
Medicine (Baltimore) ; 102(45): e35918, 2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-37960820

RESUMO

To investigate and analyze changes in the expression level and clinicopathological significance of miR-193b-3p in non-small cell lung cancer (NSCLC). In the present study, Gene Expression Omnibus (GEO), Targetscan, starBase, and Metastases databases were retrieved for bioinformatics analysis. qRT-PCR was conducted to determine the expression level of miR-193b-3p in the serum or tissues of NSCLC patients. The correlation between the expression level of serum miR-193b-3p and the clinical characteristics of NSCLC patients was analyzed, and receiver operating characteristic (ROC) curves were analyzed to assess the diagnostic significance of serum expression of miR-193b-3p in NSCLC. The GEO2R tool was used to analyze the GSE102286 dataset in the GEO database, indicating that miR-193b-3p is one of the overexpressed miRNAs in NSCLC. Databases, such as TargetScan and starBase, were used to predict miR-193b-3p target genes. Finally, 153 target genes were retrieved, and gene ontology (GO) and KEGG analyses were conducted based on the Metascape database, which indicated that all 153 target genes participated in multiple biological processes and signaling pathways closely correlated with the genesis and progression of NSCLC. miR-193b-3p is highly expressed in the serum and cancer tissues of patients with NSCLC. The high miR-193b-3p expression group had a lower degree of cancer differentiation, a higher proportion of late TNM stage, and a greater incidence of lymph node metastasis. ROC curve analysis reported that the area under the curve was 0.89 (95% CI: 0.85-0.92). High miR-193b-3p expression levels were detected in NSCLC patients and were closely correlated with the degree of malignancy in NSCLC. miR-193b-3p expression levels have a diagnostic effect on NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , MicroRNAs , Humanos , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Neoplasias Pulmonares/patologia , Metástase Linfática , MicroRNAs/genética
3.
Mol Breed ; 43(8): 65, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37538809

RESUMO

Ribosomes play a crucial role in protein biosynthesis and are linked to plant growth and development. The RimM protein has been shown to be involved in the maturation of 30S ribosomal subunits, but its exact function in plants is still unknown. In this study, we discovered a maize mutant with white and green striate leaves (wgsl1) and reduced chlorophyll content. Genetic analysis showed that the wgsl1 mutation was recessive and controlled by a single nuclear gene. Map-based cloning of ZmWGSL1 identified a base substitution (G to A) that generated a missense mutation within the Zm00001d039036 gene in the wgsl1 mutant. Zm00001d039036 encodes a 16S rRNA processing protein containing the RimM motif. Further analysis of transcriptomic data showed that the transcript levels of many ribosomal proteins involved in the small and big ribosomal subunits were dramatically up-regulated in the wgsl1 mutant. Moreover, the level of ribosomal multimers was decreased. This suggests that ZmWGSL1 plays a crucial role in the maturation of the ribosome, leading to abnormal plant growth and development. In addition, subcellular localization results indicate that WGSL1 is localized in chloroplasts. Therefore, we suggest that WGSL1 is a nuclear-encoded protein, is transported to the chloroplast to drive functions, and affects the processing of ribosomes in the chloroplast. Supplementary Information: The online version contains supplementary material available at 10.1007/s11032-023-01407-y.

4.
Int J Mol Sci ; 23(2)2022 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-35055000

RESUMO

The cellulose of the plant cell wall indirectly affects the cell shape and straw stiffness of the plant. Here, the novel brittleness mutant brittle stalk-5 (bk-5) of the maize inbred line RP125 was characterized. We found that the mutant displayed brittleness of the stalk and even the whole plant, and that the brittleness phenotype existed during the whole growth period from germination to senescence. The compressive strength was reduced, the cell wall was thinner, and the cellulose content was decreased compared to that of the wild type. Genetic analysis and map-based cloning indicated that bk-5 was controlled by a single recessive nuclear gene and that it was located in a 90.2-Kb region on chromosome 3 that covers three open reading frames (ORFs). Sequence analysis revealed a single non-synonymous missense mutation, T-to-A, in the last exon of Zm00001d043477 (B73: version 4, named BK-5) that caused the 951th amino acid to go from leucine to histidine. BK-5 encodes a cellulose synthase catalytic subunit (CesA), which is involved with cellulose synthesis. We found that BK-5 was constitutively expressed in all tissues of the germinating stage and silking stage, and highly expressed in the leaf, auricula, and root of the silking stage and the 2-cm root and bud of the germinating stage. We found that BK-5 mainly localized to the Golgi apparatus, suggesting that the protein might move to the plasma membrane with the aid of Golgi in maize. According to RNA-seq data, bk-5 had more downregulated genes than upregulated genes, and many of the downregulated genes were enzymes and transcription factors related to cellulose, hemicellulose, and lignin biosynthesis of the secondary cell wall. The other differentially expressed genes were related to metabolic and cellular processes, and were significantly enriched in hormone signal transduction, starch and sucrose metabolism, and the plant-pathogen interaction pathway. Taken together, we propose that the mutation of gene BK-5 causes the brittle stalk phenotype and provides important insights into the regulatory mechanism of cellulose biosynthesis and cell wall development in maize.


Assuntos
Parede Celular/metabolismo , Mapeamento Cromossômico , Regulação da Expressão Gênica de Plantas , Genes Recessivos , Proteínas de Plantas/genética , Zea mays/genética , Zea mays/metabolismo , Sequência de Aminoácidos , Parede Celular/química , Parede Celular/ultraestrutura , Clonagem Molecular , Técnicas de Silenciamento de Genes , Loci Gênicos , Especificidade de Órgãos , Fenótipo , Filogenia , Transporte Proteico , Análise de Sequência de DNA , Zea mays/classificação
5.
Plant J ; 108(1): 40-54, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34252236

RESUMO

Maize is an important crop worldwide, as well as a valuable model with vast genetic diversity. Accurate genome and annotation information for a wide range of inbred lines would provide valuable resources for crop improvement and pan-genome characterization. In this study, we generated a high-quality de novo genome assembly (contig N50 of 15.43 Mb) of the Chinese elite inbred line RP125 using Nanopore long-read sequencing and Hi-C scaffolding, which yield highly contiguous, chromosome-length scaffolds. Global comparison of the RP125 genome with those of B73, W22, and Mo17 revealed a large number of structural variations. To create new germplasm for maize research and crop improvement, we carried out an EMS mutagenesis screen on RP125. In total, we obtained 5818 independent M2 families, with 946 mutants showing heritable phenotypes. Taking advantage of the high-quality RP125 genome, we successfully cloned 10 mutants from the EMS library, including the novel kernel mutant qk1 (quekou: "missing a small part" in Chinese), which exhibited partial loss of endosperm and a starch accumulation defect. QK1 encodes a predicted metal tolerance protein, which is specifically required for Fe transport. Increased accumulation of Fe and reactive oxygen species as well as ferroptosis-like cell death were detected in qk1 endosperm. Our study provides the community with a high-quality genome sequence and a large collection of mutant germplasm.


Assuntos
Genoma de Planta/genética , Zea mays/genética , Produtos Agrícolas , Endosperma/genética , Endosperma/metabolismo , Endogamia , Mutação , Fenótipo , Melhoramento Vegetal , Banco de Sementes , Sementes/genética , Sementes/metabolismo , Amido/metabolismo , Zea mays/metabolismo
6.
Mitochondrial DNA B Resour ; 5(3): 3084-3085, 2020 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-33553627

RESUMO

The complete chloroplast genome of Cerber amanghas L., a species of the tribe Plumerieae of the family Apocynaceae, is determined for the first time here. The chloroplast genome is 154,428 bp long, containing a large single-copy region (LSC) of 85,138 bp and a small single-copy region (SSC) of 17,390 bp, which are separated by a pair of 25,950 bp long inverted repeat regions (IRs). It encodes a total of 115 genes, including 81 unique protein-coding genes, 30 unique tRNA genes, and 4 unique rRNA genes.Phylogenetic analysis revealed that C.manghas is a member of the paraphyletic tribe Plumerieae of Apocynaceae and is closely related to Thevetia peruviana.

7.
Biochem Biophys Res Commun ; 458(2): 287-93, 2015 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-25645016

RESUMO

Lead (Pb), as a heavy metal element, has become the most important metal pollutant of the environment. With allocating a relatively higher proportion of its biomass in roots, maize could be a potential important model to study the phytoremediation of Pb-contaminated soil. Here we analyzed the maize root transcriptome of inbred lines 9782 under heavy metal lead (Pb) pollution, which was identified as a non-hyperaccumulator for Pb in roots. In the present study, more than 98 millions reads were mapped to define gene structure and detect polymorphism, thereby to qualify transcript abundance along roots development under Pb treatment. A total of 17,707, 17,440, 16,998 and 16,586 genes were identified in maize roots at four developmental stages (0, 12 h, 24 h and 48 h) respectively and 2,825, 2,626, 2161 and 2260 stage-specifically expressed genes were also identified respectively. In addition, based on our RNA-Seq data, transcriptomic changes during maize root development responsive to Pb were investigated. A total of 384 differentially expressed genes (DEGs) (log2Ratio ≥ 1, FDR ≤ 0.001) were identified, of which, 36 genes with significant alteration in expression were detected in four developmental stages; 12 DEGs were randomly selected and successful validated by qRT-PCR. Additionally, many transcription factor families might act as the important regulators at different developmental stages, such as bZIP, ERF and GARP et al. These results will expand our understanding of the complex molecular and cellular events in maize root development and provide a foundation for future study on root development in maize under heavy metal pollution and other cereal crops.


Assuntos
Regulação da Expressão Gênica de Plantas/fisiologia , Chumbo/farmacologia , Proteínas de Plantas/metabolismo , Raízes de Plantas/fisiologia , Poluentes do Solo/farmacologia , Transcriptoma/fisiologia , Zea mays/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Raízes de Plantas/efeitos dos fármacos , Transcriptoma/efeitos dos fármacos , Zea mays/efeitos dos fármacos
8.
Int J Mol Sci ; 15(12): 23537-54, 2014 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-25526567

RESUMO

Plants adapt to adverse conditions through a series of physiological, cellular, and molecular processes, culminating in stress tolerance. However, little is known about the associated regulatory mechanisms at the epigenetic level in maize under lead (Pb) stress. Therefore, in this study, we aimed to compare DNA methylation profiles during the dynamic development of maize roots following Pb treatment to identify candidate genes involved in the response to Pb stress. Methylated DNA immunoprecipitation-sequencing (MeDIP-seq) was used to investigate the genome-wide DNA methylation patterns in maize roots under normal condition (A1) and 3 mM Pb(NO3)2 stress for 12 h (K2), 24 h (K3) and 48 h (K4). The results showed that the average methylation density was the highest in CpG islands (CGIs), followed by the intergenic regions. Within the gene body, the methylation density of the introns was higher than those of the UTRs and exons. In total, 3857 methylated genes were found in 4 tested samples, including 1805 differentially methylated genes for K2 versus A1, 1508 for K3 versus A1, and 1660 for K4 versus A1. Further analysis showed that 140 genes exhibited altered DNA methylation in all three comparisons, including some well-known stress-responsive transcription factors and proteins, such as MYB, AP2/ERF, bZIP, serine-threonine/tyrosine-proteins, pentatricopeptide repeat proteins, RING zinc finger proteins, F-box proteins, leucine-rich repeat proteins and tetratricopeptide repeat proteins. This study revealed the genome-scale DNA methylation patterns of maize roots in response to Pb exposure and identified candidate genes that potentially regulate root dynamic development under Pb stress at the methylation level.


Assuntos
Metilação de DNA/efeitos dos fármacos , Chumbo/farmacologia , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/genética , Estresse Fisiológico/genética , Zea mays/efeitos dos fármacos , Zea mays/genética , Biologia Computacional/métodos , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Anotação de Sequência Molecular , Regiões Promotoras Genéticas , Reprodutibilidade dos Testes , Análise de Sequência de DNA
9.
Int J Mol Sci ; 15(8): 13892-915, 2014 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-25116687

RESUMO

Heterosis, or hybrid vigor, contributes to superior agronomic performance of hybrids compared to their inbred parents. Despite its importance, little is known about the genetic and molecular basis of heterosis. Early maize ear inflorescences formation affects grain yield, and are thus an excellent model for molecular mechanisms involved in heterosis. To determine the parental contributions and their regulation during maize ear-development-genesis, we analyzed genome-wide digital gene expression profiles in two maize elite inbred lines (B73 and Mo17) and their F1 hybrid using deep sequencing technology. Our analysis revealed 17,128 genes expressed in these three genotypes and 22,789 genes expressed collectively in the present study. Approximately 38% of the genes were differentially expressed in early maize ear inflorescences from heterotic cross, including many transcription factor genes and some presence/absence variations (PAVs) genes, and exhibited multiple modes of gene action. These different genes showing differential expression patterns were mainly enriched in five cellular component categories (organelle, cell, cell part, organelle part and macromolecular complex), five molecular function categories (structural molecule activity, binding, transporter activity, nucleic acid binding transcription factor activity and catalytic activity), and eight biological process categories (cellular process, metabolic process, biological regulation, regulation of biological process, establishment of localization, cellular component organization or biogenesis, response to stimulus and localization). Additionally, a significant number of genes were expressed in only one inbred line or absent in both inbred lines. Comparison of the differences of modes of gene action between previous studies and the present study revealed only a small number of different genes had the same modes of gene action in both maize seedlings and ear inflorescences. This might be an indication that in different tissues or developmental stages, different global expression patterns prevail, which might nevertheless be related to heterosis. Our results support the hypotheses that multiple molecular mechanisms (dominance and overdominance modes) contribute to heterosis.


Assuntos
Regulação da Expressão Gênica de Plantas , Genoma de Planta , Vigor Híbrido/genética , Zea mays/genética , Biblioteca Gênica , Variação Genética , Sequenciamento de Nucleotídeos em Larga Escala , Endogamia , Inflorescência/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Análise de Sequência de DNA , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transcriptoma
10.
BMC Genomics ; 15: 25, 2014 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-24422852

RESUMO

BACKGROUND: In plants, microRNAs (miRNAs) are endogenous ~22 nt RNAs that play important regulatory roles in many aspects of plant biology, including metabolism, hormone response, epigenetic control of transposable elements, and stress response. Extensive studies of miRNAs have been performed in model plants such as rice and Arabidopsis thaliana. In maize, most miRNAs and their target genes were analyzed and identified by clearly different treatments, such as response to low nitrate, salt and drought stress. However, little is known about miRNAs involved in maize ear development. The objective of this study is to identify conserved and novel miRNAs and their target genes by combined small RNA and degradome sequencing at four inflorescence developmental stages. RESULTS: We used deep-sequencing, miRNA microarray assays and computational methods to identify, profile, and describe conserved and non-conserved miRNAs at four ear developmental stages, which resulted in identification of 22 conserved and 21-maize-specific miRNA families together with their corresponding miRNA*. Comparison of miRNA expression in these developmental stages revealed 18 differentially expressed miRNA families. Finally, a total of 141 genes (251 transcripts) targeted by 102 small RNAs including 98 miRNAs and 4 ta-siRNAs were identified by genomic-scale high-throughput sequencing of miRNA cleaved mRNAs. Moreover, the differentially expressed miRNAs-mediated pathways that regulate the development of ears were discussed. CONCLUSIONS: This study confirmed 22 conserved miRNA families and discovered 26 novel miRNAs in maize. Moreover, we identified 141 target genes of known and new miRNAs and ta-siRNAs. Of these, 72 genes (117 transcripts) targeted by 62 differentially expressed miRNAs may attribute to the development of maize ears. Identification and characterization of these important classes of regulatory genes in maize may improve our understanding of molecular mechanisms controlling ear development.


Assuntos
Genes de Plantas , MicroRNAs/genética , Zea mays/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Biologia Computacional , Bases de Dados Genéticas , Secas , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Sequenciamento de Nucleotídeos em Larga Escala , MicroRNAs/metabolismo , Nitratos/química , Nitratos/farmacologia , Oryza/genética , Oryza/metabolismo , Clivagem do RNA , RNA de Plantas/genética , RNA de Plantas/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Sais/química , Sais/farmacologia , Transcriptoma , Zea mays/crescimento & desenvolvimento , Zea mays/metabolismo
11.
Mol Biol Rep ; 41(4): 2471-83, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24420865

RESUMO

Currently, the molecular regulation mechanisms of disease-resistant involved in maize leaf sheaths infected by banded leaf and sheath blight (BLSB) are poorly known. To gain insight into the transcriptome dynamics that are associated with their disease-resistant, genome-wide gene expression profiling was conducted by Solexa sequencing. More than four million tags were generated from sheath tissues without any leaf or development leaf, including 193,222 and 204,824 clean tags in the two libraries, respectively. Of these, 82,864 (55.4 %) and 91,678 (51.5 %) tags were matched to the reference genes. The most differentially expressed tags with log2 ratio >2 or <-2 (P < 0.001) were further analyzed, representing 1,476 up-regulated and 1,754 down-regulated genes, except for unknown transcripts, which were classified into 11 functional categories. The most enriched categories were those of metabolism, signal transduction and cellular transport. Next, the expression patterns of 12 genes were assessed by quantitative real-time PCR, and it is showed the results were general agreement with the Solexa analysis, although the degree of change was lower in amplitude. In conclusion, we first reveal the complex changes in the transcriptome during the early development of maize sheath infected by BLSB and provide a comprehensive set of data that are essential for understanding its molecular regulation mechanism.


Assuntos
Basidiomycota/fisiologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Transcriptoma , Zea mays/genética , Zea mays/microbiologia , Biologia Computacional , Biblioteca Gênica , Redes e Vias Metabólicas , Anotação de Sequência Molecular , Reprodutibilidade dos Testes , Transdução de Sinais , Zea mays/metabolismo
12.
J Biomed Biotechnol ; 2012: 271485, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22665982

RESUMO

In the last two decades, the accumulation of heavy metal in crop grains has become the study hotspot. In this study, 19 representative elite maize inbred lines and 3 hybrid varieties were investigated at the seedling stage, which can accumulate Pb and Cd in the stems and leaves, respectively. The results demonstrated that significant differences are among inbred lines for accumulation of heavy metals, implying that the Cd accumulation is significant correlation between the male parents and their hybrids and some inbred lines have been selected for cross-breeding with low Pb or Cd accumulation, such as S37, 9782, and ES40; Moreover, some inbred lines could be suitable for phytoremediation species for soil bioremediation with high levels of Pb and Cd accumulation, including 178, R08, 48-2, and Mo17ht.


Assuntos
Cádmio/farmacocinética , Chumbo/farmacocinética , Zea mays/metabolismo , Biodegradação Ambiental , Endogamia , Zea mays/química , Zea mays/genética
13.
Mol Biol Rep ; 39(8): 8137-46, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22562381

RESUMO

MicroRNAs (miRNAs) are a class of small, non-coding regulatory RNAs that regulate gene expression by guiding target mRNA cleavage or translational inhibition in plants and animals. In this study, a small RNA library was constructed to identify conserved miRNAs as well as novel miRNAs in maize seedling roots under low level phosphorus stress. Twelve miRNAs were identified by high throughput sequencing of the library and subsequent analysis, two belong to conserved miRNA families (miRNA399b and miRNA156), and the remaining ten are novel and one of latter is conserved in gramineous species. Based on sequence homology, we predicted 125 potential target genes of these miRNAs and then expression patterns of 7 miRNAs were validated by semi-RT-PCR analysis. MiRNA399b, Zma-miR3, and their target genes (Zmpt1 and Zmpt2) were analyzed by real-time PCR. It is shown that both miRNA399b and Zma-miR3 are induced by low phosphorus stress and regulated by their target genes (Zmpt1 and Zmpt2). Moreover, Zma-miR3, regulated by two maize inorganic phosphate transporters as a newly identified miRNAs, would likely be directly involved in phosphate homeostasis, so was miRNA399b in Arabidopsis and rice. These results indicate that both conserved and maize-specific miRNAs play important roles in stress responses and other physiological processes correlated with phosphate starvation, regulated by their target genes. Identification of these differentially expressed miRNAs will facilitate us to uncover the molecular mechanisms underlying the progression of maize seedling roots development under low level phosphorus stress.


Assuntos
MicroRNAs/genética , Fósforo/metabolismo , Raízes de Plantas/genética , Plântula/genética , Estresse Fisiológico/genética , Zea mays/genética , Sequência de Bases , Clonagem Molecular , Regulação da Expressão Gênica de Plantas , Biblioteca Gênica , MicroRNAs/química , MicroRNAs/metabolismo , Raízes de Plantas/metabolismo , Plântula/metabolismo , Zea mays/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...