Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Environ Manage ; 355: 120480, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38430885

RESUMO

Submerged plants inhibit algae through shading effects, nutrient competition, allelopathy, and combinations of these mechanisms. However, it is unclear which mechanism is dominant, and how the inhibition intensity results from the traits of the plant and algae. In this study, we performed meta-analysis to quantitatively identify the dominant mechanisms, evaluate the relationship between inhibition intensity and the species and functional traits of the submerged plants or algae, and reveal the influences of external environmental factors. We found that allelopathy caused stronger inhibition than the shading effect and nutrient competition and dominated the combined mechanisms. Although the leaf shapes of the submerged plants influenced light availability, this did not change the degree of algae suppression. Algal species, properties (toxic or nontoxic) and external environmental factors (e.g., lab/mesocosm experiments, co-/filtrate/extract culture, presence or absence of interspecific competition) potentially influenced inhibition strength. Cyanobacteria and Bacillariophyta were more strongly inhibited than Chlorophyta, and toxic Cyanobacteria more than non-toxic Cyanobacteria. Algae inhibition by submerged plants was species-dependent. Ceratophyllum, Vallisneria, and Potamogeton strongly inhibited Microcystis, and can potentially prevent or mitigate harmful algal blooms of this species. However, the most common submerged plant species inhibited mixed algae communities to some extent. The results from lab experiments and mesocosm experiments both confirmed the inhibition of algae by submerged plants, but more evidence from mesocosm experiments is needed to elucidate the inhibition mechanism in complex ecosystems. Submerged plants in co-cultures inhibited algae more strongly than in extract and filtrate cultures. Complex interspecific competition may strengthen or weaken algae inhibition, but the response of this inhibition to complex biological mechanisms needs to be further explored. Our meta-analysis provides insights into which mechanisms contributed most to the inhibition effect and a scientific basis for selecting suitable submerged plant species and controlling external conditions to prevent algal blooms in future ecological restoration of lakes.


Assuntos
Cianobactérias , Ecossistema , Plantas , Proliferação Nociva de Algas , Lagos , Extratos Vegetais
2.
Front Microbiol ; 14: 1258659, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37901815

RESUMO

River-lake ecosystems are indispensable hubs for water transfers and flow regulation engineering, which have frequent and complex artificial hydrological regulation processes, and the water quality is often unstable. Microorganisms usually affect these systems by driving the nutrient cycling process. Thus, understanding the key biochemical rate-limiting steps under highly regulated conditions was critical for the water quality stability of river-lake ecosystems. This study investigated how the key microorganisms and genes involving nitrogen and phosphorus cycling contributed to the stability of water by combining 16S rRNA and metagenomic sequencing using the Dongping river-lake system as the case study. The results showed that nitrogen and phosphorus concentrations were significantly lower in lake zones than in river inflow and outflow zones (p < 0.05). Pseudomonas, Acinetobacter, and Microbacterium were the key microorganisms associated with nitrate and phosphate removal. These microorganisms contributed to key genes that promote denitrification (nirB/narG/narH/nasA) and phosphorus absorption and transport (pstA/pstB/pstC/pstS). Partial least squares path modeling (PLS-PM) revealed that environmental factors (especially flow velocity and COD concentration) have a significant negative effect on the key microbial abundance (p < 0.001). Our study provides theoretical support for the effective management and protection of water transfer and the regulation function of the river-lake system.

3.
Int J Phytoremediation ; 23(14): 1476-1485, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33825568

RESUMO

NOVELTY STATEMENT: The microbial abundance and communities were characterized in CWs with different plant species during winter. Better removal efficiency with high microbial abundance and diversified microbial community were found in CWs planted with Phragmites australis. This study confirmed that in winter, withered plants in CWs can effectively remove NH4+-N and COD by affecting microbial abundance and community structure.


Assuntos
Poaceae , Typhaceae , Microbiologia da Água , Áreas Alagadas , Biodegradação Ambiental , Estações do Ano , Eliminação de Resíduos Líquidos
4.
Bioresour Technol ; 211: 574-83, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27038266

RESUMO

This work aims at revealing the adhesion characteristics and microbial community of the biofilm in an integrated moving bed biofilm reactor-membrane bioreactor, and further evaluating their variations over time. With multiple methods, the adhesion characteristics and microbial community of the biofilm on the carriers were comprehensively illuminated, which showed their dynamic variation along with the operational time. Results indicated that: (1) the roughness of biofilm on the carriers increased very quickly to a maximum value at the start-up stage, then, decreased to become a flat curve, which indicated a layer of smooth biofilm formed on the surface; (2) the tightly-bound protein and polysaccharide was the most important factor influencing the stability of biofilm; (3) the development of biofilm could be divided into three stages, and Gammaproteobacteria were the most dominant microbial species in class level at the last stage, which occupied the largest ratio (51.48%) among all microbes.


Assuntos
Reatores Biológicos/microbiologia , Membranas Artificiais , Consórcios Microbianos , Biofilmes/crescimento & desenvolvimento , Desenho de Equipamento
5.
J Hazard Mater ; 279: 38-45, 2014 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-25036999

RESUMO

The work mainly presented a laboratory-scale investigation on an effective process to extract a value-added product from municipal excess sludge. The functional groups in the hydrolysate were characterized with Fourier transform infrared spectrum, and the contained amino acids were measured by means of an automatic amino acid analyzer. The corrosion-inhibition characteristics of the hydrolysate were determined with weight-loss measurement, electrochemical polarization and scanning electron microscopy. Results indicated that the hydrolysate contained 15 kinds of amino acid, and their adsorption on the surface could effectively inhibit the corrosion reaction of the steel from the acid medium. Polarization curves indicated that the obtained hydrolysate was a mixed-type inhibitor, but mainly restricted metal dissolution on the anode. The adsorption accorded well with the Langmuir adsorption isotherm, involved an increase in entropy, and was a spontaneous, exothermic process.


Assuntos
Aminoácidos/química , Aminoácidos/isolamento & purificação , Indústria de Processamento de Alimentos , Esgotos/análise , Eletroquímica , Poluição Ambiental/prevenção & controle , Estudos de Viabilidade , Hidrólise , Microscopia Eletrônica de Varredura , Espectroscopia de Infravermelho com Transformada de Fourier , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...