Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 17200, 2024 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-39060323

RESUMO

Nutrition is a limiting feature of species evolution. The differences in nutritional requirements are the evolutionary result of differential adaptations to environmental changes, explaining differences in their ecological traits. Cnaphalocrocis medinalis and Cnaphalocrocis exigua, two related species of rice leaffolders, have similar morphology and feeding properties but different migration and overwintering behaviors. However, it is unclear whether they have evolved adult nutritional differentiation traits to coexist. To explore this issue, this study examined the effects of carbohydrates and amino acids on their reproductive and demographic parameters. The findings indicate that carbohydrate intake prolonged the longevity and population growth of two rice leaffolders, but amino acid intake promoted egg hatching only. However, nutrient deficiency made it impossible for C. medinalis to reproduce successfully and survive, but it did not affect C. exigua. The population expansion and survival of migratory C. medinalis relied on adult nutritional intake. Conversely, the nutrients necessary for C. exigua overwintering activity mostly came from the storage of larvae. The difference in nutritional requirements for population growth and survival between the two rice leaffolders partially explained their differences in migration and overwintering.


Assuntos
Oryza , Animais , Oryza/crescimento & desenvolvimento , Aminoácidos/metabolismo , Crescimento Demográfico , Necessidades Nutricionais , Mariposas/fisiologia , Mariposas/crescimento & desenvolvimento , Larva/fisiologia , Feminino , Longevidade/fisiologia , Masculino , Especificidade da Espécie
2.
Exp Hematol ; 137: 104255, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38876252

RESUMO

The genetic lesions that drive acute megakaryoblastic leukemia (AMKL) have not been fully elucidated. To search for genetic alterations in AMKL, we performed targeted deep sequencing in 34 AMKL patient samples and 8 AMKL cell lines and detected frequent genetic mutations in the NOTCH pathway in addition to previously reported alterations in GATA-1 and the JAK-STAT pathway. Pharmacological and genetic NOTCH activation, but not inhibition, significantly suppressed AMKL cell proliferation in both in vitro and in vivo assays employing a patient-derived xenograft model. These results suggest that NOTCH inactivation underlies AMKL leukemogenesis. and NOTCH activation holds the potential for therapeutic application in AMKL.

3.
Clin Cancer Res ; 30(10): 2170-2180, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38437679

RESUMO

PURPOSE: DNA methylation alterations are widespread in acute myelogenous leukemia (AML) and myelodysplastic syndrome (MDS), some of which appear to have evolved independently of somatic mutations in epigenetic regulators. Although the presence of somatic mutations in peripheral blood can predict the risk of development of AML and MDS, its accuracy remains unsatisfactory. EXPERIMENTAL DESIGN: We performed global DNA methylation profiling in a case control study nested within the Singapore Chinese Health Study to evaluate whether DNA methylation alterations were associated with AML/MDS development. Targeted deep sequencing and methylated DNA immunoprecipitation sequencing (MeDIP-seq) were performed on peripheral blood collected a median of 9.9 years before diagnosis of AML or MDS, together with age-matched still-healthy individuals as controls. RESULTS: Sixty-six individuals who developed AML or MDS displayed significant DNA methylation changes in the peripheral blood compared with 167 age- and gender-matched controls who did not develop AML/MDS during the follow-up period. Alterations in methylation in the differentially methylation regions were associated with increased odds of developing AML/MDS. CONCLUSIONS: The epigenetic changes may be acquired independently and before somatic mutations that are relevant for AML/MDS development. The association between methylation changes and the risk of pre-AML/MDS in these individuals was considerably stronger than somatic mutations, suggesting that methylation changes could be used as biomarkers for pre-AML/MDS screening.


Assuntos
Metilação de DNA , Leucemia Mieloide Aguda , Síndromes Mielodisplásicas , Humanos , Masculino , Feminino , Pessoa de Meia-Idade , Síndromes Mielodisplásicas/genética , Síndromes Mielodisplásicas/sangue , Síndromes Mielodisplásicas/diagnóstico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/sangue , Leucemia Mieloide Aguda/diagnóstico , Estudos de Casos e Controles , Idoso , Adulto , Epigênese Genética , Singapura/epidemiologia , Mutação , Predisposição Genética para Doença , Fatores de Risco
4.
Angew Chem Int Ed Engl ; 63(10): e202318530, 2024 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-38196070

RESUMO

Dendritic cell (DC) maturation and antigen presentation are key factors for successful vaccine-based cancer immunotherapy. This study developed manganese-based layered double hydroxide (Mn-LDH) nanoparticles as a self-adjuvanted vaccine carrier that not only promoted DC maturation through synergistically depleting endogenous glutathione (GSH) and activating STING signaling pathway, but also facilitated the delivery of model antigen ovalbumin (OVA) into lymph nodes and subsequent antigen presentation in DCs. Significant therapeutic-prophylactic efficacy of the OVA-loaded Mn-LDH (OVA/Mn-LDH) nanovaccine was determined by the tumor growth inhibition in the mice bearing B16-OVA tumor. Our results showed that the OVA/Mn-LDH nanoparticles could be a potent delivery system for cancer vaccine development without the need of adjuvant. Therefore, the combination of GSH exhaustion and STING pathway activation might be an advisable approach for promoting DC maturation and antigen presentation, finally improving cancer vaccine efficacy.


Assuntos
Vacinas Anticâncer , Nanopartículas , Neoplasias , Camundongos , Animais , Eficácia de Vacinas , Neoplasias/patologia , Imunoterapia/métodos , Adjuvantes Imunológicos/farmacologia , Glutationa , Células Dendríticas , Camundongos Endogâmicos C57BL , Ovalbumina
5.
Adv Sci (Weinh) ; 11(9): e2304939, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38115765

RESUMO

Treatment of castration-resistant prostate cancer (CRPC) is a long-standing clinical challenge. Traditionally, CRPC drugs work by either reducing dihydrotestosterone biosynthesis or blocking androgen receptor (AR) signaling. Here it is demonstrated that AR inhibitor treatment gives rise to a drug-tolerant persister (DTP) state. The thioredoxin/peroxiredoxin pathway is up-regulated in DTP cells. Peroxiredoxin 5 (PRDX5) promotes AR inhibitor resistance and CRPC development. Inhibition of PRDX5 suppresses DTP cell proliferation in culture, dampens CRPC development in animal models, and stabilizes PSA progression and metastatic lesions in patients. Therefore, the study provides a novel mechanism and potential target for the management of castration-resistant prostate cancer.


Assuntos
Neoplasias de Próstata Resistentes à Castração , Masculino , Animais , Humanos , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Neoplasias de Próstata Resistentes à Castração/genética , Receptores Androgênicos/genética , Peroxirredoxinas/metabolismo , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA