Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Brain ; 15(1): 88, 2022 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-36309684

RESUMO

The pedunculopontine nucleus (PPN) is a heterogeneous midbrain structure involved in various brain functions, such as motor control, learning, reward, and sleep. Previous studies using conventional tracers have shown that the PPN receives extensive afferent inputs from various cortical areas. To examine how these cortical axons make collateral projections to other subcortical areas, we used a dual-viral injection strategy to sparsely label PPN-targeting cortical pyramidal neurons in CaMKIIα-Cre transgenic mice. Using a high-speed volumetric imaging with on-the-fly-scan and Readout (VISoR) technique, we visualized brain-wide axonal projections of individual PPN-targeting neurons from several cortical areas, including the prelimbic region (PL), anterior cingulate area (ACA) and secondary motor cortex (MOs). We found that each PPN-projecting neuron had a unique profile of collateralization, with some subcortical areas being preferential targets. In particular, PPN-projecting neurons from all three traced cortical areas exhibited common preferential collateralization to several nuclei, with most neurons targeting the striatum (STR), lateral hypothalamic area (LHA) and periaqueductal gray (PAG), and a substantial portion of neurons also targeting the zona incerta (ZI), median raphe nucleus (MRN) and substantia nigra pars reticulata (SNr). Meanwhile, very specific collateralization patterns were found for other nuclei, including the intermediate reticular nucleus (IRN), parvicellular reticular nucleus (PARN) and gigantocellular reticular nucleus (GRN), which receive collateral inputs almost exclusively from the MOs. These observations provide potential anatomical mechanisms for cortical neurons to coordinate the PPN with other subcortical areas in performing different physiological functions.


Assuntos
Encéfalo , Córtex Motor , Animais , Camundongos , Encéfalo/fisiologia , Células Piramidais , Bulbo , Substância Cinzenta Periaquedutal
3.
Commun Biol ; 5(1): 322, 2022 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-35388122

RESUMO

Corticotropin-releasing factor (CRF) neurons are one of the most densely distributed cell types in the central amygdala (CeA), and are involved in a wide range of behaviors including anxiety and learning. However, the fundamental input circuits and patterns of CeA-CRF neurons are still unclear. Here, we generate a monosynaptic-input map onto CeA-CRF neurons at single-cell resolution via a retrograde rabies-virus system. We find all inputs are located in 44 nested subregions that directly innervate CeA-CRF neurons; most of them are top-down convergent inputs expressing Ca2+/calmodulin-dependent protein kinase II, and are centralized in cortex, especially in the layer 4 of the somatosensory cortex, which may directly relay information from the thalamus. While the bottom-up divergent inputs have the highest proportion of glutamate decarboxylase expression. Finally, en passant structures of single input neuron are revealed by in-situ reconstruction in a modified 3D-reference atlas, represented by a Periaqueductal gray-Subparafascicular nucleus-Subthalamic nucleus-Globus pallidus-Caudoputamen-CeA pathway. Taken together, our findings provide morphological and connectivity properties of inputs onto CeA-CRF neurons, which may provide insights for future studies interrogating circuit mechanisms of CeA-CRF neurons in mediating various functions.


Assuntos
Núcleo Central da Amígdala , Hormônio Liberador da Corticotropina , Animais , Ansiedade , Núcleo Central da Amígdala/metabolismo , Hormônio Liberador da Corticotropina/metabolismo , Camundongos , Neurônios/fisiologia
4.
Mol Brain ; 14(1): 38, 2021 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-33608037

RESUMO

The nucleus of the solitary tract (NTS) plays a crucial role in integrating peripheral information regarding visceral functions. Glutamate decarboxylase 2 (GAD2) inhibitory neurons are abundant in the NTS, and are known to form local and short-range projections within the NTS and nearby hindbrain areas. Here we performed whole-brain mapping of outputs from GAD2 neurons in the NTS using cell-type specific viral labeling together with ultrahigh-speed 3D imaging at 1-µm resolution. In addition to well-known targets of NTS GAD2 neurons including the principle sensory nucleus of the trigeminal (PSV), spinal nucleus of the trigeminal (SPV), and other short-range targets within the hindbrain, the high sensitivity of our system helps reveal previously unknown long-range projections that target forebrain regions, including the bed nuclei of the stria terminalis (BST) involved in stress and fear responses, and the paraventricular hypothalamic nucleus (PVH) involved in energy balance and stress-related neuroendocrine responses. The long-range projections were further verified by retrograde labeling of NTS GAD2 neurons with cholera toxin B (CTB) injections in the BST and PVH, and by Cre-dependent retrograde tracing with rAAV2-retro injections in the two regions of GAD2-Cre mice. Finally, we performed complete morphological reconstruction of several sparsely labeled neurons projecting to the forebrain and midbrain. These results provide new insights about how NTS might participate in physiological and emotional modulation.


Assuntos
Neurônios GABAérgicos/fisiologia , Núcleo Solitário/fisiologia , Animais , Glutamato Descarboxilase/metabolismo , Integrases/metabolismo , Camundongos Transgênicos , Núcleo Hipotalâmico Paraventricular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...