Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Genet Genomics ; 299(1): 19, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38416229

RESUMO

KEY MESSAGE: GaKAN2, a member of the KANADI family, was found to be widely expressed in the cotton tissues and regulates trichome development through complex pathways. Cotton trichomes are believed to be the defense barrier against insect pests. Cotton fiber and trichomes are single-cell epidermal extensions with shared regulatory mechanisms. Despite several studies underlying mechanism of trichome development remains elusive. The KANADI is one of the key transcription factors (TFs) family, regulating Arabidopsis trichomes growth. However, the function of KANADI genes in cotton remains unknown. In the current study genome-wide scanning, transcriptomic analysis, gene silencing, subcellular localization, and yeast two-hybrid techniques were employed to decipher the function of KANADI TFs family genes in cotton crop. A total of 7 GaKAN genes were found in the Gossypium arboreum. Transcriptomic data revealed that these genes were significantly expressed in stem and root. Moreover, GaKAN2 was widely expressed in other tissues also. Subsequently, we selected GaKAN2 to validate the function of KANADI genes. Silencing of GaKAN2 resulted in a 24.99% decrease in single-cell trichomes and an 11.33% reduction in internodal distance, indicating its potential role in regulating trichomes and plant growth. RNA-Seq analysis elucidated that GaSuS and GaERS were the downstream genes of GaKAN2. The transcriptional activation and similarity in silencing phenotype between GaKAN2 and GaERS suggested that GaKAN2 regulates trichomes development through GaERS. Moreover, KEGG analysis revealed that a significant number of genes were enriched in the biosynthesis of secondary metabolites and plant hormone signal transduction pathways, thereby suggesting that GaKAN2 regulates the stem trichomes and plant growth. The GFP subcellular localization and yeast transcriptional activation analysis elucidated that GaKAN2 was located in the nucleus and capable of regulating the transcription of downstream genes. This study elucidated the function and characteristics of the KANADI gene family in cotton, providing a fundamental basis for further research on GaKAN2 gene in cotton plant trichomes and plant developmental processes.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Fatores de Transcrição/genética , Gossypium/genética , Tricomas/genética , Saccharomyces cerevisiae , Regulação da Expressão Gênica
2.
Plants (Basel) ; 12(23)2023 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-38068587

RESUMO

The paper mulberry is a commonly found tree species with a long history of cultivation. It also serves as a crucial case study for understanding how woody plants adapt to low temperatures. Under cold treatment, we observed a substantial number of alternative splicing (AS) genes, showcasing the intricate landscape of AS events. We have detected all seven types of AS events, with the alternative 3' splice site (A3) having the most. We observed that many genes that underwent differential AS were significantly enriched in starch and sucrose metabolism and circadian rhythm pathways. Moreover, a considerable proportion of differentially spliced genes (DSGs) also showed differential expression, with 20.38% and 25.65% under 12 h and 24 h cold treatments, respectively. This suggests a coordinated regulation between gene AS and expression, playing a pivotal role in the paper mulberry's adaptation to cold stress. We further investigated the regulatory mechanisms of AS, identifying 41 serine/arginine-rich (SR) splicing factors, among which 11 showed differential expression under cold treatment, while 29 underwent alternative splicing. Additionally, genes undergoing AS displayed significantly higher DNA methylation levels under cold stress, while normal splicing (non-AS) genes exhibited relatively lower methylation levels. These findings suggest that methylation may play an important role in governing gene AS. Finally, our research will provide useful information on the role of AS in the cold acclimation tolerance of the paper mulberry.

3.
Plants (Basel) ; 12(18)2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37765490

RESUMO

Rapeseed is a significant oil crop, and the size and length of its pods affect its productivity. However, manually counting the number of rapeseed pods and measuring the length, width, and area of the pod takes time and effort, especially when there are hundreds of rapeseed resources to be assessed. This work created two state-of-the-art deep learning-based methods to identify rapeseed pods and related pod attributes, which are then implemented in rapeseed pots to improve the accuracy of the rapeseed yield estimate. One of these methods is YOLO v8, and the other is the two-stage model Mask R-CNN based on the framework Detectron2. The YOLO v8n model and the Mask R-CNN model with a Resnet101 backbone in Detectron2 both achieve precision rates exceeding 90%. The recognition results demonstrated that both models perform well when graphic images of rapeseed pods are segmented. In light of this, we developed a coin-based approach for estimating the size of rapeseed pods and tested it on a test dataset made up of nine different species of Brassica napus and one of Brassica campestris L. The correlation coefficients between manual measurement and machine vision measurement of length and width were calculated using statistical methods. The length regression coefficient of both methods was 0.991, and the width regression coefficient was 0.989. In conclusion, for the first time, we utilized deep learning techniques to identify the characteristics of rapeseed pods while concurrently establishing a dataset for rapeseed pods. Our suggested approaches were successful in segmenting and counting rapeseed pods precisely. Our approach offers breeders an effective strategy for digitally analyzing phenotypes and automating the identification and screening process, not only in rapeseed germplasm resources but also in leguminous plants, like soybeans that possess pods.

4.
Int J Mol Sci ; 24(14)2023 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-37511571

RESUMO

Cotton is a valuable cash crop in many countries. Cotton fiber is a trichome that develops from a single epidermal cell and serves as an excellent model for understanding cell differentiation and other life processes. Alternative splicing (AS) of genes is a common post-transcriptional regulatory process in plants that is essential for plant growth and development. The process of AS during cotton fiber formation, on the other hand, is mainly unknown. A substantial number of multi-exon genes were discovered to be alternatively spliced during cotton fiber formation in this study, accounting for 23.31% of the total number of genes in Gossypium hirsutum. Retention intron (RI) is not necessarily the most common AS type, indicating that AS genes and processes during fiber development are very temporal and tissue-specific. When compared to fiber samples, AS is more prevalent at the fiber initiation stages and in the ovule, indicating that development stages and tissues use different AS strategies. Genes involved in fiber development have gone through stage-specific AS, demonstrating that AS regulates cotton fiber development. Furthermore, AS can be regulated by trans-regulation elements such as splicing factor and cis-regulation elements such as gene length, exon numbers, and GC content, particularly at exon-intron junction sites. Our findings also suggest that increased DNA methylation may aid in the efficiency of AS, and that gene body methylation is key in AS control. Finally, our research will provide useful information about the roles of AS during the cotton fiber development process.


Assuntos
Processamento Alternativo , Genes de Plantas , Perfilação da Expressão Gênica , Gossypium/metabolismo , Fibra de Algodão , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
5.
RSC Adv ; 13(22): 15148-15156, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-37213332

RESUMO

Hybrid organic switch-inorganic semiconductor systems have important applications in both photo-responsive intelligent surfaces and microfluidic devices. In this context, herein, we performed first-principles calculations to investigate a series of organic switches of trans/cis-azobenzene fluoride and pristine/oxidized trimethoxysilane adsorbed on low-index anatase slabs. The trends in the surface-adsorbate interplay were examined in terms of the electronic structures and potential distributions. Consequently, it was found that the cis-azobenzene fluoride (oxidized trimethoxysilane)-terminated anatase surface attains a lower ionization potential than the trans-azobenzene fluoride (pristine trimethoxysilane)-terminated anatase surface due to its smaller induced (larger intrinsic) dipole moment, whose direction points inwards (outwards) from the substrate, which originates from the electron charge redistribution at the interface (polarity of attached hydroxyl groups). By combining the induced polar interaction analysis and the experimental measurements in the literature, we demonstrate that the ionization potential is an important predictor of the surface wetting properties of adsorbed systems. The anisotropic absorbance spectra of anatase grafted with azobenzene fluoride and trimethoxysilane are also related to the photoisomerization and oxidization process under UV irradiation, respectively.

6.
Phys Chem Chem Phys ; 25(3): 2366-2376, 2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36598003

RESUMO

Monolayer XP3 (X = Ge, In) is a theoretically predicted two-dimensional (2D) material with fascinating adsorption efficiency, foreshadowing its potential applications in the photovoltaic and optoelectronic communities. To achieve a comprehensive understanding of its optical properties and to further boost quickly identifying its specific applications, in this paper we systematically investigated the polarization-resolved and helicity-resolved Raman spectra excited by two commonly used laser lines (532 nm and 633 nm) through density functional theory. The dynamical stability of monolayer XP3 is demonstrated by phonon dispersion. Monolayer GeP3 and InP3 are found to exhibit significantly different point group symmetries and thereby Raman properties due to the big difference in atomic size and electronic configurations between the Ge atom and In atom. Raman anisotropy of monolayer XP3 has been found when the wave vector of linear polarized incident light is parallel to the monolayer, and all the anisotropic Raman active phonons are categorized in terms of the locations of two (four) maxima in polarization angle dependent Raman intensities of the parallel (perpendicular) configuration. The polarization direction averaged Raman spectra have been further discussed according to the characteristics of light absorbance. The calculations of helicity-resolved Raman spectra indicate a stronger helicity selection rule under helical excitation with the wave vector normal to the monolayer. The present work paves the way for the suitable design, characterization and exploitation of the proposed 2D material with controllable surface properties for applications in electronics and optoelectronics.

7.
Plants (Basel) ; 11(3)2022 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-35161340

RESUMO

To improve our understanding of the mechanism of maize seed germination under deep sowing, transcriptome sequencing and physiological metabolism analyses were performed using B73 embryos separated from ungerminated seeds (UG) or seeds germinated for 2 d at a depth of 2 cm (normal sowing, NS) or 20 cm (deep sowing, DS). Gene ontology (GO) analysis indicated that "response to oxidative stress" and "monolayer-surrounded lipid storage body" were the most significant GO terms in up- and down-regulated differentially expressed genes (DEGs) of DS. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis suggested that "phenylpropanoid biosynthesis" and "starch and sucrose metabolism" were critical processes in maize seed germination under deep-sowing conditions. Consistent with DEGs, the activities of superoxide dismutase, catalase, peroxidases and α-amylase, as well as the contents of gibberellin 4, indole acetic acid, zeatin and abscisic acid were significantly increased, while the jasmonic-acid level was dramatically reduced under deep-sowing stress. The expressions of six candidate genes were more significantly upregulated in B73 (deep-sowing-tolerant) than in Mo17 (deep-sowing-sensitive) at 20 cm sowing depth. These findings enrich our knowledge of the key biochemical pathways and genes regulating maize seed germination under deep-sowing conditions, which may help in the breeding of varieties tolerant to deep sowing.

8.
Int J Mol Sci ; 22(19)2021 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-34639205

RESUMO

Bamboo is one of the most important non-timber forest resources worldwide. It has considerable economic value and unique flowering characteristics. The long juvenile phase in bamboo and unpredictable flowering time limit breeding and genetic improvement and seriously affect the productivity and application of bamboo forests. Members of SQUA-like subfamily genes play an essential role in controlling flowering time and floral organ identity. A comprehensive study was conducted to explain the functions of five SQUA-like subfamily genes in Phyllostachys edulis. Expression analysis revealed that all PeSQUAs have higher transcript levels in the reproductive period than in the juvenile phase. However, PeSQUAs showed divergent expression patterns during inflorescence development. The protein-protein interaction (PPI) patterns among PeSQUAs and other MADS-box members were analyzed by yeast two-hybrid (Y2H) experiments. Consistent with amino acid sequence similarity and phylogenetic analysis, the PPI patterns clustered into two groups. PeMADS2, 13, and 41 interacted with multiple PeMADS proteins, whereas PeMADS3 and 28 hardly interacted with other proteins. Based on our results, PeSQUA might possess different functions by forming protein complexes with other MADS-box proteins at different flowering stages. Furthermore, we chose PeMADS2 for functional analysis. Ectopic expression of PeMADS2 in Arabidopsis and rice caused early flowering, and abnormal phenotype was observed in transgenic Arabidopsis lines. RNA-seq analysis indicated that PeMADS2 integrated multiple pathways regulating floral transition to trigger early flowering time in rice. This function might be due to the interaction between PeMADS2 and homologous in rice. Therefore, we concluded that the five SQUA-like genes showed functional conservation and divergence based on sequence differences and were involved in floral transitions by forming protein complexes in P. edulis. The MADS-box protein complex model obtained in the current study will provide crucial insights into the molecular mechanisms of bamboo's unique flowering characteristics.


Assuntos
Flores/crescimento & desenvolvimento , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Proteínas de Domínio MADS/metabolismo , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Poaceae/crescimento & desenvolvimento , Sequência de Aminoácidos , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Flores/genética , Flores/metabolismo , Proteínas de Domínio MADS/genética , Oryza/genética , Oryza/crescimento & desenvolvimento , Oryza/metabolismo , Filogenia , Proteínas de Plantas/genética , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Poaceae/genética , Poaceae/metabolismo , Homologia de Sequência , Transcriptoma
9.
Int J Mol Sci ; 22(6)2021 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-33809404

RESUMO

Dynamic remodeling of the actin cytoskeleton plays a central role in the elongation of cotton fibers, which are the most important natural fibers in the global textile industry. Here, a high-resolution mapping approach combined with comparative sequencing and a transgenic method revealed that a G65V substitution in the cotton actin Gh_D04G0865 (GhACT17D in the wild-type) is responsible for the Gossypium hirsutum Ligon lintless-1 (Li1) mutant (GhACT17DM). In the mutant GhACT17DM from Li1 plant, Gly65 is substituted with valine on the lip of the nucleotide-binding domain of GhACT17D, which probably affects the polymerization of F-actin. Over-expression of GhACT17DM, but not GhACT17D, driven by either a CaMV35 promoter or a fiber-specific promoter in cotton produced a Li1-like phenotype. Compared with the wild-type control, actin filaments in Li1 fibers showed higher growth and shrinkage rates, decreased filament skewness and parallelness, and increased filament density. Taken together, our results indicate that the incorporation of GhACT17DM during actin polymerization disrupts the establishment and dynamics of the actin cytoskeleton, resulting in defective fiber elongation and the overall dwarf and twisted phenotype of the Li1 mutant.


Assuntos
Citoesqueleto de Actina/metabolismo , Actinas/genética , Fibra de Algodão , Gossypium/genética , Mutação/genética , Actinas/química , Sequência de Aminoácidos , Sequência Conservada , Estudos de Associação Genética , Gossypium/crescimento & desenvolvimento , Fenótipo , Mapeamento Físico do Cromossomo , Proteínas de Plantas/química , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Homologia Estrutural de Proteína
10.
BMC Plant Biol ; 21(1): 115, 2021 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-33632125

RESUMO

BACKGROUND: Cotton stem trichomes and seed fibers are each single celled structures formed by protrusions of epidermal cells, and were found sharing the overlapping molecular mechanism. Compared with fibers, cotton stem trichomes are more easily observed, but the molecular mechanisms underlying their development are still poorly understood. RESULTS: In this study, Gossypium hirsutum (Gh) and G. barbadense (Gb) were found to differ greatly in percentages of varieties/accessions with glabrous stems and in trichome density, length, and number per trichopore. Gh varieties normally had long singular and clustered trichomes, while Gb varieties had short clustered trichomes. Genetic mapping using five F2 populations from crosses between glabrous varieties and those with different types of stem trichomes revealed that much variation among stem trichome phenotypes could be accounted for by different combinations of genes/alleles on Chr. 06 and Chr. 24. The twenty- six F1 generations from crosses between varieties with different types of trichomes had varied phenotypes, further suggesting that the trichomes of tetraploid cotton were controlled by different genes/alleles. Compared to modern varieties, a greater proportion of Gh wild accessions were glabrous or had shorter and denser trichomes; whereas a smaller proportion of Gb primitive accessions had glabrous stems. A close correlation between fuzz fiber number and stem trichome density was observed in both Gh and Gb primitive accessions and modern varieties. CONCLUSION: Based on these findings, we hypothesize that stem trichomes evolved in parallel with seed fibers during the domestication of cultivated tetraploid cotton. In addition, the current results illustrated that stem trichome can be used as a morphological index of fiber quality in cotton conventional breeding.


Assuntos
Gossypium/crescimento & desenvolvimento , Tricomas/crescimento & desenvolvimento , Evolução Biológica , Fibra de Algodão , Produtos Agrícolas/genética , Produtos Agrícolas/crescimento & desenvolvimento , Cruzamentos Genéticos , Especiação Genética , Gossypium/genética , Caules de Planta/citologia , Caules de Planta/genética , Caules de Planta/crescimento & desenvolvimento , Especificidade da Espécie , Tetraploidia , Tricomas/genética
11.
J BUON ; 25(3): 1395-1403, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32862582

RESUMO

PURPOSE: To uncover the role of LINC01980 in aggravating the progression of hepatocellular carcinoma (HCC) via targeting caspase 9. METHODS: The expression levels of LINC01980 and caspase 9 in HCC tissues and paracancer tissues were determined by qRT-PCR. The prognostic potentials of LINC01980 and caspase 9 in HCC were assessed by Kaplan-Meier method. The regulatory effects of LINC01980 and caspase 9 on the viability, clonality and apoptosis of Huh7 and Hep3B cells were examined. Finally, the interaction between LINC01980 and caspase 9 was evaluated by performing dual-luciferase reporter gene assay and rescue experiments. RESULTS: LINC01980 was upregulated in HCC tissues and cells. High level of LINC01980 indicated worse prognosis in HCC patients. Knockdown of LINC01980 could attenuate viability and clonality, but induced apoptosis in Huh7 and Hep3B cells. Caspase 9 was downregulated in HCC, and its high level predicted a better prognosis in HCC patients. Overexpression of caspase 9 achieved the same regulatory effects as LINC01980 knockdown on HCC cells. Caspase 9 was the downstream target for LINC01980, and its level was negatively regulated by LINC01980. In HCC, LINC01980 regulated HCC cell behaviors by downregulating caspase 9. CONCLUSIONS: Upregulation of LINC01980 in HCC predicts a poor prognosis. LINC01980 aggravates the progression of HCC via downregulating caspase 9.


Assuntos
Carcinoma Hepatocelular/genética , Caspase 9/genética , Regulação para Baixo/genética , Neoplasias Hepáticas/genética , RNA Longo não Codificante/genética , Apoptose/genética , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Progressão da Doença , Regulação Neoplásica da Expressão Gênica/genética , Células Hep G2 , Humanos , Neoplasias Hepáticas/patologia , Prognóstico
12.
Nat Genet ; 52(5): 525-533, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32313247

RESUMO

Polyploidy is an evolutionary innovation for many animals and all flowering plants, but its impact on selection and domestication remains elusive. Here we analyze genome evolution and diversification for all five allopolyploid cotton species, including economically important Upland and Pima cottons. Although these polyploid genomes are conserved in gene content and synteny, they have diversified by subgenomic transposon exchanges that equilibrate genome size, evolutionary rate heterogeneities and positive selection between homoeologs within and among lineages. These differential evolutionary trajectories are accompanied by gene-family diversification and homoeolog expression divergence among polyploid lineages. Selection and domestication drive parallel gene expression similarities in fibers of two cultivated cottons, involving coexpression networks and N6-methyladenosine RNA modifications. Furthermore, polyploidy induces recombination suppression, which correlates with altered epigenetic landscapes and can be overcome by wild introgression. These genomic insights will empower efforts to manipulate genetic recombination and modify epigenetic landscapes and target genes for crop improvement.


Assuntos
Genoma de Planta/genética , Gossypium/genética , Fibra de Algodão , Domesticação , Epigenômica/métodos , Evolução Molecular , Regulação da Expressão Gênica de Plantas/genética , Genômica/métodos , Filogenia , Poliploidia
13.
Plant Mol Biol ; 103(4-5): 409-423, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32189187

RESUMO

Cotton fibers are initiated from the epidermal cells of the ovule before or on the day of anthesis. Gossypium arboreum SMA-4 mutant contains recessive mutation (sma-4(ha)) and has the phenotypes of fibreless seeds and glabrous stems. In this study, fine mapping and alternative splicing analysis indicated a nucleotide substitution (AG → AC) at splicing site in a homeodomain-leucine zipper IV family gene (GaHD1) might cause gene A3S (Alternative 3' splicing) mistake, suggested that GaHD1 was the candidate gene of sma-4(ha). Many genes related to the fiber initiation are identified to be differentially expressed in the mutant which could result in the blocked fiber initiation signals such as H2O2, or Ca in the mutant. Further comparative physiological analysis of H2O2 production and Ca2+ flux in the SMA-4 and wide type cotton confirmed that H2O2 and Ca were important fiber initiation signals and regulated by GaHD1. The in vitro ovule culture of the mutant with hormones recovered the fibered phenotype coupled with the restoration of these signals. Overexpressing of GaHD1 in Arabidopsis increased trichome densities on the sepal, leaf, and stem tissues while transient silencing of the GaHD1 gene in G. arboreum reduced the trichome densities. These phenotypes indicated that GaHD1 is the candidate gene of SMA-4 with a crucial role in acting upstream molecular switch of signal transductions for cotton trichome and fiber initiations.


Assuntos
Regulação da Expressão Gênica de Plantas/fisiologia , Gossypium/fisiologia , Peróxido de Hidrogênio/metabolismo , Proteínas de Plantas/metabolismo , Tricomas/crescimento & desenvolvimento , Processamento Alternativo , Sinalização do Cálcio , Mapeamento Cromossômico , Cromossomos de Plantas , Fibra de Algodão , Ligação Genética , Gossypium/genética , Mutação , Proteínas de Plantas/genética
14.
Mol Genet Genomics ; 295(1): 47-54, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31420737

RESUMO

Stem trichomes and seed fibers originate from epidermal cells and partially share a regulatory pathway at the molecular level. In Gossypium barbadense, two insertions of a Ty1 long-terminal repeat-retrotransposon [transposable element TE1 and TE2] in a homeodomain-leucine zipper gene (HD1) result in glabrous stems. The primers used to identify the TE insertions in G. barbadense were applied to screen for the same events in 81 modern G. hirsutum varieties and 31 wild races. Three wild races were found carrying the same TEs as G. barbadense. However, the TE insertions in two of these wild races occurred at different sites (4th exon), therefore, named TE3, while the TE in the other wild race occurred at the same site as TE2. An RNA sequencing and qRT-PCR analysis indicated that the loss of HD1 function was caused by the TE insertion. Genetic mapping revealed a strong association between glabrous stems and TE3 insertions, confirming that HD1 is a critical gene for stem trichome initiation in G. hirsutum, as in G. barbadense. Using the long-terminal repeat sequence as a query to search against the Texas Marker-1 reference genome sequence, we found that the TE occurred after tetraploid cotton formation and evolved at different rates in G. hirsutum and G. barbadense. Interestingly, at least three independent insertion events of the same retrotransposon occurred preferentially in the A sub-genome's HD1 gene, but not in the D sub-genome of G. hirsutum or G. barbadense, suggesting that an unknown TE insertion mechanism and resultant gene function changes may have hastened cotton speciation.


Assuntos
Proteínas de Arabidopsis/genética , Gossypium/genética , Histona Desacetilases/genética , Mutagênese Insercional/genética , Caules de Planta/genética , Retroelementos/genética , Sequências Repetidas Terminais/genética , Tricomas/genética , Mapeamento Cromossômico/métodos , Regulação da Expressão Gênica de Plantas/genética , Genoma de Planta/genética , Zíper de Leucina/genética , Fenótipo , Filogenia , Tetraploidia
15.
Plant Physiol ; 180(1): 497-508, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30765480

RESUMO

Light-mediated seedling development is coordinately controlled by a variety of key regulators. Here, we identified two B-box (BBX)-containing proteins, BBX30 and BBX31, as repressors of photomorphogenesis. ELONGATED HYPOCOTYL5, a central regulator of light signaling, directly binds to the G-box cis-element present in the promoters of BBX30 and BBX31 and negatively controls their transcription levels in the light. Seedlings with mutations in BBX30 or BBX31 are hypersensitive to light, whereas the overexpression of BBX30 or BBX31 leads to hypo-photomorphogenic growth in the light. Furthermore, transgenic and phenotypic analysis revealed that the B-box domain of BBX30 or BBX31 is essential for their respective functioning in the regulation of photomorphogenic development in plants. In conclusion, BBX30 and BBX31 act as key negative regulators of light signaling, and their transcription is repressed by ELONGATED HYPOCOTYL5 through directly associating with their promoters.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Fatores de Transcrição/metabolismo , Proteínas de Arabidopsis/genética , Fatores de Transcrição de Zíper de Leucina Básica/genética , Flores/genética , Regulação da Expressão Gênica de Plantas , Peptídeos e Proteínas de Sinalização Intracelular/genética , Luz , Mutação , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas , Domínios Proteicos , Plântula/genética , Plântula/crescimento & desenvolvimento , Fatores de Transcrição/genética
16.
BMC Plant Biol ; 18(1): 176, 2018 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-30176795

RESUMO

BACKGROUND: MADS-box genes encode a large family of transcription factors that play significant roles in plant growth and development. Bamboo is an important non-timber forest product worldwide, but previous studies on the moso bamboo (Phyllostachys edulis) MADS-box gene family were not accurate nor sufficiently detailed. RESULTS: Here, a complete genome-wide identification and characterization of the MADS-box genes in moso bamboo was conducted. There was an unusual lack of type-I MADS-box genes in the bamboo genome database ( http://202.127.18.221/bamboo/index.php ), and some of the PeMADS sequences are fragmented and/or inaccurate. We performed several bioinformatics techniques to obtain more precise sequences using transcriptome assembly. In total, 42 MADS-box genes, including six new type-I MADS-box genes, were identified in bamboo, and their structures, phylogenetic relationships, predicted conserved motifs and promoter cis-elements were systematically investigated. An expression analysis of the bamboo MADS-box genes in floral organs and leaves revealed that several key members are involved in bamboo inflorescence development, like their orthologous genes in Oryza. The ectopic overexpression of one MADS-box gene, PeMADS5, in Arabidopsis triggered an earlier flowering time and the development of an aberrant flower phenotype, suggesting that PeMADS5 acts as a floral activator and is involved in bamboo flowering. CONCLUSION: We produced the most comprehensive information on MADS-box genes in moso bamboo. Additionally, a critical PeMADS gene (PeMADS5) responsible for the transition from vegetative to reproductive growth was identified and shown to be related to bamboo floral development.


Assuntos
Flores/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Proteínas de Domínio MADS/genética , Proteínas de Plantas/genética , Poaceae/genética , Transcriptoma , Biologia Computacional , Flores/genética , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Domínio MADS/metabolismo , Filogenia , Proteínas de Plantas/metabolismo , Poaceae/crescimento & desenvolvimento , Poaceae/metabolismo
17.
Curr Opin Plant Biol ; 42: 37-48, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29502038

RESUMO

Polyploidy or whole genome duplication (WGD) is a prominent feature for genome evolution of some animals and all flowering plants, including many important crops such as wheat, cotton, and canola. In autopolyploids, genome duplication often perturbs dosage regulation on biological networks. In allopolyploids, interspecific hybridization could induce genetic and epigenetic changes, the effects of which could be amplified by genome doubling (ploidy changes). Albeit the importance of genetic changes, some epigenetic changes can be stabilized and transmitted as epialleles into the progeny, which are subject to natural selection, adaptation, and domestication. Here we review recent advances for general and specific roles of epigenetic changes in the evolution of flowering plants and domestication of agricultural crops.


Assuntos
Produtos Agrícolas/genética , Domesticação , Epigênese Genética/genética , Evolução Molecular , Produtos Agrícolas/fisiologia , Regulação da Expressão Gênica de Plantas , Poliploidia
18.
Sci Rep ; 7(1): 10554, 2017 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-28874707

RESUMO

Tanshinones and phenolic acids are crucial bioactive compounds biosynthesized in Salvia miltiorrhiza. Methyl jasmonate (MeJA) is an effective elicitor to enhance the production of phenolic acids and tanshinones simultaneously, while yeast extract (YE) is used as a biotic elicitor that only induce tanshinones accumulation. However, little was known about the different molecular mechanism. To identify the downstream and regulatory genes involved in tanshinone and phenolic acid biosynthesis, we conducted comprehensive transcriptome profiling of S. miltiorrhiza hairy roots treated with either MeJA or YE. Total 55588 unigenes were assembled from about 1.72 billion clean reads, of which 42458 unigenes (76.4%) were successfully annotated. The expression patterns of 19 selected genes in the significantly upregulated unigenes were verified by quantitative real-time PCR. The candidate downstream genes and other cytochrome P450s involved in the late steps of tanshinone and phenolic acid biosynthesis pathways were screened from the RNA-seq dataset based on co-expression pattern analysis with specific biosynthetic genes. Additionally, 375 transcription factors were identified to exhibit a significant up-regulated expression pattern in response to induction. This study can provide us a valuable gene resource for elucidating the molecular mechanism of tanshinones and phenolic acids biosynthesis in hairy roots of S. miltiorrhiza.


Assuntos
Abietanos/biossíntese , Hidroxibenzoatos/metabolismo , Salvia miltiorrhiza/genética , Transcriptoma , Abietanos/genética , Genes de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Salvia miltiorrhiza/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
19.
PLoS One ; 11(2): e0147377, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26848576

RESUMO

Wheat heading date is an important agronomic trait determining maturation time and yield. A set of common wheat (Triticum aestivum var. Chinese Spring; CS)-wild emmer (T. turgidum L. subsp. dicoccoides (TDIC)) chromosome arm substitution lines (CASLs) was used to identify and allocate QTLs conferring late or early spike emergence by examining heading date. Genetic loci accelerating heading were found on TDIC chromosome arms 3AL and 7BS, while loci delaying heading were located on 4AL and 2BS. To map QTLs conferring late heading on 2BS, F2 populations derived from two cross combinations of CASL2BS × CS and CASL3AL × CASL2BS were developed and each planted at two times, constituting four F2 mapping populations. Heading date varied continuously among individuals of these four populations, suggesting quantitative characteristics. A genetic map of 2BS, consisting of 23 SSR and one single-stranded conformation polymorphism (SSCP) marker(s), was constructed using these F2 populations. This map spanned a genetic length of 53.2 cM with average marker density of 2.3 cM. The photoperiod-sensitivity gene Ppd-B1 was mapped to chromosome arm 2BS as a SSCP molecular marker, and was validated as tightly linked to a major QTL governing late heading of CASL2BS in all mapping populations. A significant dominance by additive effect of Ppd-B1 with the LUX gene located on 3AL was also detected. CS had more copies of Ppd-B1 than CASL2BS, implying that increased copy number could elevate the expression of Ppd-1 in CS, also increasing expression of LUX and FT genes and causing CS to have an earlier heading date than CASL2BS in long days.


Assuntos
Mapeamento Cromossômico , Cromossomos de Plantas , Locos de Características Quantitativas , Característica Quantitativa Herdável , Triticum/genética , Epistasia Genética , Dosagem de Genes , Estudos de Associação Genética , Ligação Genética , Transcrição Gênica
20.
Genetics ; 201(1): 143-54, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26133897

RESUMO

Cotton (Gossypium) stem trichomes are mostly single cells that arise from stem epidermal cells. In this study, a homeodomain-leucine zipper gene (HD1) was found to cosegregate with the dominant trichome locus previously designated as T1 and mapped to chromosome 6. Characterization of HD1 orthologs revealed that the absence of stem trichomes in modern Gossypium barbadense varieties is linked to a large retrotransposon insertion in the ninth exon, 2565 bp downstream from the initial codon in the At subgenome HD1 gene (At-GbHD1). In both the At and Dt subgenomes, reduced transcription of GbHD1 genes is caused by this insertion. The disruption of At-HD1 further affects the expression of downstream GbMYB25 and GbHOX3 genes. Analyses of primitive cultivated accessions identified another retrotransposon insertion event in the sixth exon of At-GbHD1 that might predate the previously identified retrotransposon in modern varieties. Although both retrotransposon insertions results in similar phenotypic changes, the timing of these two retrotransposon insertion events fits well with our current understanding of the history of cotton speciation and dispersal. Taken together, the results of genetics mapping, gene expression and association analyses suggest that GbHD1 is an important component that controls stem trichome development and is a promising candidate gene for the T1 locus. The interspecific phenotypic difference in stem trichome traits also may be attributable to HD1 inactivation associated with retrotransposon insertion.


Assuntos
Genes Homeobox , Gossypium/genética , Proteínas de Plantas/genética , Retroelementos/genética , Mapeamento Cromossômico , Especiação Genética , Zíper de Leucina , Mutagênese Insercional , Fenótipo , Proteínas de Plantas/química , Caules de Planta/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...