Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
3.
Adv Mater ; : e2401789, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38577904

RESUMO

The ternary strategy, in which one guest component is introduced into one host binary system, is considered to be one of the most effective ways to realize high-efficiency organic solar cells (OSCs). To date, there is no efficient method to predict the effectiveness of guest components in ternary OSCs. Herein, three guest compositions (i.e., ANF-1, ANF-2 and ANF-3) with different electrostatic potential (ESP) are designed and synthesized by modulating the electron-withdrawing ability of the terminal groups through density functional theory simulations. The effects of the introduction of guest component into the host system (D18:N3) on the photovoltaic properties are investigated. The theoretical and experimental studies provide a key rule for guest acceptor in ternary OSCs to improve the open-circuit voltage, that is, the larger ESP difference between the guest and host acceptor, the stronger the intermolecular interactions and the higher the miscibility, which improves the luminescent efficiency of the blend film and the electroluminescence quantum yield (EQEEL) of the device by reducing the aggregation-caused-quenching, thereby effectively decreasing the non-radiative voltage loss of ternary OSCs. This work will greatly contribute to the development of highly efficient guest components, thereby promoting the rapid breakthrough of the 20% efficiency bottleneck for single-junction OSCs.

4.
Angew Chem Int Ed Engl ; 63(18): e202401518, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38459749

RESUMO

The hole-transporting material (HTM), poly (3,4-ethylene dioxythiophene) poly(styrene sulfonate) (PEDOT : PSS), is the most widely used material in the realization of high-efficiency organic solar cells (OSCs). However, the stability of PEDOT : PSS-based OSCs is quite poor, arising from its strong acidity and hygroscopicity. In addition, PEDOT : PSS has an absorption in the infrared region and high highest occupied molecular orbital (HOMO) energy level, thus limiting the enhancement of short-circuit current density (Jsc) and open-circuit voltage (Voc), respectively. Herein, two asymmetric self-assembled molecules (SAMs), namely BrCz and BrBACz, were designed and synthesized as HTM in binary OSCs based on the well-known system of PM6 : Y6, PM6 : eC9, PM6 : L8-BO, and D18 : eC9. Compared with BrCz, BrBACz shows larger dipole moment, deeper work function and lower surface energy. Moreover, BrBACz not only enhances photon harvesting in the active layer, but also minimizes voltage losses as well as improves interface charge extraction/ transport. Consequently, the PM6 : eC9-based binary OSC using BrBACz as HTM exhibits a champion efficiency of 19.70 % with a remarkable Jsc of 29.20 mA cm-2 and a Voc of 0.856 V, which is a record efficiency for binary OSCs so far. In addition, the unencapsulated device maintains 95.0 % of its original efficiency after 1,000 hours of storage at air ambient, indicating excellent long-term stability.

5.
Chem Soc Rev ; 53(5): 2350-2387, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38268469

RESUMO

Organic solar cells (OSCs) have attracted a great deal of attention in the field of clean solar energy due to their advantages of transparency, flexibility, low cost and light weight. Introducing them to the market enables seamless integration into buildings and windows, while also supporting wearable, portable electronics and internet-of-things (IoT) devices. With the development of photovoltaic materials and the optimization of fabrication technology, the power conversion efficiencies (PCEs) of OSCs have rapidly improved and now exceed 20%. However, there is a significant lack of focus on material stability and device lifetime, causing a severe hindrance to commercial applications. In this review, we carefully review important strategies employed to improve the stability of OSCs over the past three years from the perspectives of material design and device engineering. Furthermore, we analyze and discuss the current important progress in terms of air, light, thermal and mechanical stability. Finally, we propose the future research directions to overcome the challenges in achieving highly stable OSCs. We expect that this review will contribute to solving the stability problem of OSCs, eventually paving the way for commercial applications in the near future.

6.
Free Radic Biol Med ; 210: 416-429, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38042225

RESUMO

BACKGROUND: Menaquinone-4(MK-4), the isoform of vitamin K2 in the brain, exerts neuroprotective effects against a variety of central nervous system disorders. This study aimed to demonstrate the anti-ferroptosis effects of MK-4 in neurons after SAH. METHODS: A subarachnoid hemorrhage (SAH) model was prepared by endovascular perforation in mice. In vitro hemoglobin stimulation of primary cortical neurons mimicked SAH. MK-4, Brequinar (BQR, DHODH inhibitor), and Selisistat (SEL, SIRT1 inhibitor) were administered, respectively. Subsequently, WB, immunofluorescence was used to determine protein expression and localization, and transmission electron microscopy was used to observe neuronal mitochondrial structure while other indicators of ferroptosis were measured. RESULTS: MK-4 treatment significantly upregulated the protein levels of DHODH; decreased GSH, PTGS2, NOX1, ROS, and restored mitochondrial membrane potential. Meanwhile, MK-4 upregulated the expression of SIRT1 and promoted its entry into the nucleus. BQR or SEL partially abolished the protective effect of MK-4 on, neurologic function, and ferroptosis. CONCLUSIONS: Taken together, our results suggest that MK-4 attenuates ferroptosis after SAH by upregulating DHODH through the activation of SIRT1.


Assuntos
Lesões Encefálicas , Ferroptose , Hemorragia Subaracnóidea , Ratos , Camundongos , Animais , Ratos Sprague-Dawley , Di-Hidro-Orotato Desidrogenase , Vitamina K 2/farmacologia , Hemorragia Subaracnóidea/tratamento farmacológico , Hemorragia Subaracnóidea/metabolismo , Sirtuína 1/genética , Sirtuína 1/metabolismo , Lesões Encefálicas/metabolismo
7.
World Neurosurg ; 183: e22-e27, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37865196

RESUMO

OBJECTIVE: Systemic inflammation following traumatic brain injury (TBI) has been extensively studied over the past decades, as it contributes significantly to the pathophysiological injury mechanisms and subsequent poor outcomes. Systemic immune-inflammation (SII) index is a novel biomarker of systemic inflammatory response. However, its predictive value regarding TBI prognosis in clinical practice remains insufficiently investigated. METHODS: A total of 102 TBI patients admitted to Nanjing Drum Tower Hospital from July 2019 to February 2022 were enrolled. We employed various statistical analyses to evaluate the correlation between inflammatory indicators upon admission and patient prognosis, compared the predictive accuracy of these indicators, and generated receiver operating curve analysis to test their prognostic performance. RESULTS: The SII index, platelet count, absolute lymphocyte count, and neutrophil/lymphocyte ratio (NLR) were capable of distinguishing TBI prognosis according to univariate logistic regression models (P < 0.05). Multivariate logistic regression models revealed that increased SII index, platelet count, and NLR upon admission were independent predictors of poor TBI prognosis (P < 0.05). Receiver operating curve analysis further demonstrated that the SII index (area under the curve = 0.845, 95% confidence interval 0.769-0.921, P = 0.000) exhibited higher predictive ability than the NLR (area under the curve = 0.694, 95% confidence interval 0.591-0.796, P = 0.001). CONCLUSIONS: Our findings suggested that increased SII index during the early stages of TBI was an independent risk factor for poor prognosis with satisfactory predictive value. The SII index provides a reliable, convenient, and cost-effective prognostic model to evaluate systemic inflammation after TBI and identify patients at risk of poor outcomes, thereby offering valuable guidance for clinical practice.


Assuntos
Lesões Encefálicas Traumáticas , Linfócitos , Humanos , Estudos Retrospectivos , Prognóstico , Inflamação , Lesões Encefálicas Traumáticas/diagnóstico
8.
Transl Stroke Res ; 2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38147294

RESUMO

Subarachnoid hemorrhage (SAH) is a type of stroke with a high disability and mortality rate. Apoptosis caused by massive damage to mitochondria in neuron cells and inflammatory responses caused by high extracellular ATP lead to poor outcomes. USP30 is a deubiquitinating enzyme that inhibits mitophagy, resulting in a failure to remove damaged mitochondria in a timely manner after SAH; nevertheless, the pathway through which USP30 inhibits mitophagy is unknown. This study evaluated the neuroprotective role and possible molecular basis by which inhibiting USP30 to attenuate SAH-induced EBI by promoting neuronal mitophagy. We used an in vitro model of hemoglobin exposure and an in vivo model of intravascular perforation. Increased expression of USP30 was found after SAH in vivo and in vitro, and USP30 inhibition expression in SAH mice treated with MF094 resulted in significant improvement of neurological injury and inflammatory response and mediated good outcomes, suggesting a neuroprotective effect of USP30 inhibition. In cultured neurons, inhibition of USP30 promoted ubiquitination modification of mitochondrial fusion protein 2 (MFN2) by E3 ubiquitin ligase (Parkin), separating damaged mitochondria from the healthy mitochondrial network and prompting mitophagy, causing early clearance of damaged intracellular mitochondria, and reducing the onset of apoptosis. The high extracellular ATP environment was meliorated, reversing the conversion of microglia to a pro-inflammatory phenotype and reducing inflammatory injury. USP30 inhibition had no autophagy-promoting effect on structurally and functionally sound mitochondria and did not inhibit normal intracellular ATP production. The findings suggest that USP30 inhibition has a neuroprotective effect after SAH by promoting early mitophagy after SAH to clear damaged mitochondria.

9.
Cell Commun Signal ; 21(1): 175, 2023 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-37480108

RESUMO

BACKGROUND: The phagocytosis and homeostasis of microglia play an important role in promoting blood clearance and improving prognosis after subarachnoid hemorrhage (SAH). LC3-assocaited phagocytosis (LAP) contributes to the microglial phagocytosis and homeostasis via autophagy-related components. With RNA-seq sequencing, we found potential signal pathways and genes which were important for the LAP of microglia. METHODS: We used an in vitro model of oxyhemoglobin exposure as SAH model in the study. RNA-seq sequencing was performed to seek critical signal pathways and genes in regulating LAP. Bioparticles were used to access the phagocytic ability of microglia. Western blot (WB), immunoprecipitation, quantitative polymerase chain reaction (qPCR) and immunofluorescence were performed to detect the expression change of LAP-related components and investigate the potential mechanisms. RESULTS: In vitro SAH model, there were increased inflammation and decreased phagocytosis in microglia. At the same time, we found that the LAP of microglia was inhibited in all stages. RNA-seq sequencing revealed the importance of P38 MAPK signal pathway and DAPK1 in regulating microglial LAP. P38 was found to regulate the expression of DAPK1, and P38-DAPK1 axis was identified to regulate the LAP and homeostasis of microglia after SAH. Finally, we found that P38-DAPK1 axis regulated expression of BECN1, which indicated the potential mechanism of P38-DAPK1 axis regulating microglial LAP. CONCLUSION: P38-DAPK1 axis regulated the LAP of microglia via BECN1, affecting the phagocytosis and homeostasis of microglia in vitro SAH model. Video Abstract.


Assuntos
Microglia , Hemorragia Subaracnóidea , Humanos , Fagocitose , Autofagia , Inflamação , Proteínas Quinases Associadas com Morte Celular
10.
ACS Sens ; 8(6): 2375-2382, 2023 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-37253195

RESUMO

The electrical vapor sensor based on carbon nanotubes (CNTs) has attracted wide attention due to its excellent conductivity, stable interfacial structure, and low dimensional quantum effects. However, the conductivity and contact interface activity were still limited by the random distribution of coated CNTs, which led to limited performance. We developed a new strategy to unify the CNT directions with image fractal designing of the electrode system. In such a system, directional aligned CNTs were gained under a well-modulated electric field, leading to microscale CNT exciton highways and molecule-scale host-guest site activation. The carrier mobility of the aligned CNT device is 20-fold higher than that of the random network CNT device. With excellent electrical properties, such modulated CNT devices based on fractal electrodes behave as an ultrasensitive vapor sensor for methylphenethylamine, a mimic of illicit drug methamphetamine. The detection limit reached as low as 0.998 ppq, 6 orders of magnitude sensitive than the reported 5 ppb record based on interdigital electrodes with random distributed CNTs. Since the device is easily fabricated in wafer-level and compatible with the CMOS process, such a fractal design strategy for aligned CNT preparation will be widely applied in a variety of wafer-level electrical functional devices.


Assuntos
Nanotubos de Carbono , Nanotubos de Carbono/química , Fractais , Eletrodos , Condutividade Elétrica , Gases
11.
ACS Sens ; 8(3): 1318-1327, 2023 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-36795762

RESUMO

CNT/organic probe-based chemiresistive sensors suffer from the problem of low sensitivity and poor stability due to the unstable and unfavorable CNT/organic probe interface. A new designing strategy of a one-dimensional van der Waals heterostructure was developed for ultrasensitive vapor sensing. By modifying the perylene diimide molecule at the bay region with phenoxyl and further Boc-NH- phenoxy side chains, a highly stable 1D VDW heterostructure SWCNT-probe molecule system was formed with ultrasensitivity and specificity. Interfacial recognition sites consisting of SWCNT and the probe molecule are responsible for the synergistical and excellent sensing response to MPEA molecules, which was proved by Raman, XPS, and FTIR characterizations together with dynamic simulation. Based on such a sensitive and stable VDW heterostructure system, the measured detection limit reached as low as 3.6 ppt for the synthetic drug analogue N-methylphenethylimine (MPEA) in the vapor phase, and the sensor showed almost no performance degradation even after 10 days. Furthermore, a miniaturized detector was developed for real-time monitoring of drug vapor detection.


Assuntos
Gases , Medicamentos Sintéticos , Domínio Catalítico , Detecção do Abuso de Substâncias
13.
Elife ; 112022 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-36214665

RESUMO

Lack of oxygen (hypoxia and anoxia) is detrimental to cell function and survival and underlies many disease conditions. Hence, metazoans have evolved mechanisms to adapt to low oxygen. One such mechanism, metabolic suppression, decreases the cellular demand for oxygen by downregulating ATP-demanding processes. However, the molecular mechanisms underlying this adaptation are poorly understood. Here, we report on the role of ndrg1a in hypoxia adaptation of the anoxia-tolerant zebrafish embryo. ndrg1a is expressed in the kidney and ionocytes, cell types that use large amounts of ATP to maintain ion homeostasis. ndrg1a mutants are viable and develop normally when raised under normal oxygen. However, their survival and kidney function is reduced relative to WT embryos following exposure to prolonged anoxia. We further demonstrate that Ndrg1a binds to the energy-demanding sodium-potassium ATPase (NKA) pump under anoxia and is required for its degradation, which may preserve ATP in the kidney and ionocytes and contribute to energy homeostasis. Lastly, we show that sodium azide treatment, which increases lactate levels under normoxia, is sufficient to trigger NKA degradation in an Ndrg1a-dependent manner. These findings support a model whereby Ndrg1a is essential for hypoxia adaptation and functions downstream of lactate signaling to induce NKA degradation, a process known to conserve cellular energy.


Assuntos
Hipóxia , Peixe-Zebra , Trifosfato de Adenosina/metabolismo , Animais , Hipóxia/genética , Lactatos , Oxigênio/metabolismo , Potássio/metabolismo , Sódio/metabolismo , Azida Sódica/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo , Peixe-Zebra/metabolismo
14.
J Neurochem ; 163(5): 419-437, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36269673

RESUMO

Subarachnoid haemorrhage (SAH) has a high rate of disability and mortality. Extremely damaging molecules, including adenosine triphosphate (ATP), are released from extravasated red blood cells and nerve cells, which activate microglia and induce sterile tissue injury and organ dysfunction. P2X purinoceptor 7 (P2X7) is one of the most important purine receptors on the microglial surface and is involved in the proinflammatory activation of microglia. While P2X7 can also affect microglial phagocytosis, the mechanism is not clear. Here, we demonstrated that microglial phagocytosis is progressively impaired under continued BzATP exposure and P2X7 activation. Furthermore, we found that P2X7 activation leads to increased intracellular Ca2+ levels and activates Calcineurin, which dephosphorylates dynamin-related protein 1 (DRP1) S637. The dephosphorylation of DRP1 at S637 leads to increased mitochondrial fission and decreased mitochondrial function, which may be responsible for the decreased microglial phagocytosis. Finally, we pharmacologically inhibited P2X7 activation in mice, which resulted in rescue of mitochondrial function and decreased microglial proliferation, but improved phagocytosis after SAH. Our study confirmed that P2X7 activation after SAH leads to the impairment of microglial phagocytosis through mitochondrial fission and verified that P2X7 inhibition restores microglial phagocytosis both in vitro and in vivo.


Assuntos
Microglia , Fagocitose , Receptores Purinérgicos P2X7 , Hemorragia Subaracnóidea , Animais , Camundongos , Trifosfato de Adenosina/metabolismo , Microglia/metabolismo , Mitocôndrias/metabolismo , Dinâmica Mitocondrial , Receptores Purinérgicos P2X7/metabolismo , Hemorragia Subaracnóidea/metabolismo , Humanos
15.
Oxid Med Cell Longev ; 2022: 9148257, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36062190

RESUMO

Neuronal apoptosis after subarachnoid hemorrhage (SAH) is believed to play an important role in early brain injury after SAH. The energy metabolism of neuron is closely related to its survival. The transient hyperglycemia caused by insulin resistance (IR) after SAH seriously affects the prognosis of patients. However, the specific mechanisms of IR after SAH are still not clear. Studies have shown that α-KG takes part in the regulation of IR and cell apoptosis. In this study, we aim to investigate whether α-KG can reduce IR after SAH, improve the disorder of neuronal glucose metabolism, alleviate neuronal apoptosis, and ultimately play a neuroprotective role in SAH-induced EBI. We first measured α-KG levels in the cerebrospinal fluid (CSF) of patients with SAH. Then, we established a SAH model through hemoglobin (Hb) stimulation with HT22 cells for further mechanism research. Furthermore, an in vivo SAH model in mice was established by endovascular perforation. Our results showed that α-KG levels in CSF significantly increased in SAH patients and could be used as a potential prognostic biomarker. In in vitro model of SAH, we found that α-KG not only inhibited IR-induced reduction of glucose uptake in neurons after SAH but also alleviated SAH-induced neuronal apoptosis. Mechanistically, we found that α-KG inhibits neuronal IR by inhibiting S6K1 activation after SAH. Moreover, neuronal apoptosis significantly increased when glucose uptake was reduced. Furthermore, our results demonstrated that α-KG could also alleviate neuronal apoptosis in vivo SAH model. In conclusion, our study suggests that α-KG alleviates apoptosis by inhibiting IR induced by S6K1 activation after SAH.


Assuntos
Resistência à Insulina , Hemorragia Subaracnóidea , Animais , Apoptose/fisiologia , Glucose , Ácidos Cetoglutáricos , Camundongos , Fosforilação , Ratos , Ratos Sprague-Dawley , Hemorragia Subaracnóidea/tratamento farmacológico , Hemorragia Subaracnóidea/metabolismo
16.
Bioessays ; 44(11): e2200104, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36101513

RESUMO

Many viruses evolved mechanisms for capping the 5'-ends of their plus-strand RNAs as a means of hijacking the eukaryotic messenger RNA (mRNA) splicing/translation machinery. Although capping is critical for replication, the RNAs of these viruses have other essential functions including their requirement to be packaged as either genomes or pre-genomes into progeny viruses. Recent studies indicate that human immunodeficiency virus type-1 (HIV-1) RNAs are segregated between splicing/translation and packaging functions by a mechanism that involves structural sequestration of the 5'-cap. Here, we examined studies reported for other viruses and retrotransposons that require both selective packaging of their RNAs and 5'-RNA capping for host-mediated translation. Our findings suggest that viruses and retrotransposons have evolved multiple mechanisms to control 5'-cap accessibility, consistent with the hypothesis that removal or sequestration of the 5' cap enables packageable RNAs to avoid capture by the cellular RNA processing and translation machinery.


Assuntos
RNA Viral , Retroelementos , Humanos , RNA Viral/genética , RNA Viral/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Processamento Pós-Transcricional do RNA , Splicing de RNA/genética
17.
ISA Trans ; 131: 444-459, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35581022

RESUMO

Remaining useful life prediction is of huge significance in preventing equipment malfunctions and reducing maintenance costs. Currently, machine learning algorithms have become hotspots in remaining useful life prediction due to their high flexibility and convenience. However, machine learnings require large amounts of data, and their prediction performance depends heavily on the selection of hyper-parameters. To overcome these shortcomings, a novel remaining useful life prediction method for small sample cases is proposed based on multi-support vector regression fusion. In the offline training phase, the fusion model is established, consisting of multiple support vector regression sub-models To obtain the optimal sub-model parameters, the Bayesian optimization algorithm is applied and an improved optimization target is formulated with various metrics describing regression and prediction performance. In the online prediction phase, an adaptive weight updating algorithm based on dynamic time warping is developed to measure the fitness of each sub-model and determine the corresponding weight value. The C-MAPSS engine dataset is used to test the performance of the proposed method, along with some existing machine learning methods as comparison. The proposed method only requires 30% of the training data sample to achieve high accuracy, with a root mean square error of 14.98, which is superior to other state-of-the-art methods. The results demonstrate the superiority of the proposed method.


Assuntos
Algoritmos , Aprendizado de Máquina , Teorema de Bayes , Máquina de Vetores de Suporte
18.
Front Endocrinol (Lausanne) ; 13: 1092431, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36589857

RESUMO

The pathological condition of insulin resistance prevents the neuroprotective effects of insulin. Numerous studies have demonstrated that insulin resistance, as an independent risk factor for ischemic stroke, accelerates the formation of thrombosis and promotes the development of atherosclerosis, both of which are major mechanisms of ischemic stroke. Additionally, insulin resistance negatively affects the prognosis of patients with ischemic stroke regardless of whether the patient has diabetes, but the mechanisms are not well studied. We explored the association between insulin resistance and the primary mechanisms of brain injury in ischemic stroke (inflammation, oxidative stress, and neuronal damage), looking for potential causes of poor prognosis in patients with ischemic stroke due to insulin resistance. Furthermore, we summarize insulin resistance therapeutic approaches to propose new therapeutic directions for clinically improving prognosis in patients with ischemic stroke.


Assuntos
Isquemia Encefálica , Diabetes Mellitus , Resistência à Insulina , AVC Isquêmico , Acidente Vascular Cerebral , Humanos , Resistência à Insulina/fisiologia , Acidente Vascular Cerebral/etiologia , Acidente Vascular Cerebral/terapia , AVC Isquêmico/etiologia , Isquemia Encefálica/complicações
19.
Medicine (Baltimore) ; 100(46): e27474, 2021 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-34797274

RESUMO

ABSTRACT: The best time window of percutaneous coronary intervention (PCI) is within 12 hours for ST-segment elevation myocardial infarction (STEMI). However, there is limited evidence about the proper time of PCI for delayed STEMI patients.From June 2014 to June 2015, a total of 268 patients receiving PCI with second-generation drug-eluting stent in a Chinese hospital after 3 days of STEMI onset were enrolled in this retrospective study, who were divided into the early group (3-14 days) and the late group (>14 days). A propensity score match was conducted to reduce the baseline difference. The primary endpoint of all-cause death and secondary endpoints of major adverse cardiac and cerebrovascular event (myocardial infarction [MI], stroke, emergent revascularization, and rehospitalization due to heart failure) were compared using survival analysis.At last, 182 cases were matched after propensity score match, with no statistical difference in baseline characteristics and PCI data. Kaplan-Meier survival curve demonstrated no difference in all-cause death of the 2 groups (P = .512). However, the early group presented a higher incidence of MI than the late group (P = .036). The multivariate Cox regression analysis also demonstrated that the early PCI was an independent risk factor for MI compared with late PCI (hazard ratio = 3.83, 95%CI [1.91-8.82], P = .001). There was no statistical difference in other major adverse cardiac and cerebrovascular event, including stroke, emergent revascularization, and rehospitalization due to heart failure.Using the 2nd drug-eluting stent, early PCI (3-14 days) and late PCI (>14 days) have comparable efficacy and outcomes. However, patients receiving early PCI are subjected to a relatively higher risk of recurrent MI.


Assuntos
Stents Farmacológicos , Infarto do Miocárdio/cirurgia , Intervenção Coronária Percutânea/métodos , Infarto do Miocárdio com Supradesnível do Segmento ST/cirurgia , Feminino , Insuficiência Cardíaca , Humanos , Masculino , Infarto do Miocárdio/epidemiologia , Intervenção Coronária Percutânea/efeitos adversos , Complicações Pós-Operatórias , Pontuação de Propensão , Estudos Retrospectivos , Fatores de Risco , Acidente Vascular Cerebral/epidemiologia , Resultado do Tratamento
20.
Proc Natl Acad Sci U S A ; 118(37)2021 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-34493679

RESUMO

HIV-1 selectively packages two copies of its 5'-capped RNA genome (gRNA) during virus assembly, a process mediated by the nucleocapsid (NC) domain of the viral Gag polyprotein and encapsidation signals located within the dimeric 5' leader of the viral RNA. Although residues within the leader that promote packaging have been identified, the determinants of authentic packaging fidelity and efficiency remain unknown. Here, we show that a previously characterized 159-nt region of the leader that possesses all elements required for RNA dimerization, high-affinity NC binding, and packaging in a noncompetitive RNA packaging assay (ΨCES) is unexpectedly poorly packaged when assayed in competition with the intact 5' leader. ΨCES lacks a 5'-tandem hairpin element that sequesters the 5' cap, suggesting that cap sequestration may be important for packaging. Consistent with this hypothesis, mutations within the intact leader that expose the cap without disrupting RNA structure or NC binding abrogated RNA packaging, and genetic addition of a 5' ribozyme to ΨCES to enable cotranscriptional shedding of the 5' cap promoted ΨCES-mediated RNA packaging to wild-type levels. Additional mutations that either block dimerization or eliminate subsets of NC binding sites substantially attenuated competitive packaging. Our studies indicate that packaging is achieved by a bipartite mechanism that requires both sequestration of the 5' cap and exposure of NC binding sites that reside fully within the ΨCES region of the dimeric leader. We speculate that cap sequestration prevents irreversible capture by the cellular RNA processing and translation machinery, a mechanism likely employed by other viruses that package 5'-capped RNA genomes.


Assuntos
Regiões 5' não Traduzidas/genética , Genoma Viral , HIV-1/genética , Capuzes de RNA/metabolismo , RNA Viral/metabolismo , Vírion/fisiologia , Montagem de Vírus , Células HEK293 , Infecções por HIV/virologia , Humanos , Conformação de Ácido Nucleico , Capuzes de RNA/química , Capuzes de RNA/genética , RNA Viral/química , RNA Viral/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...