Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Biomed Pharmacother ; 170: 115679, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38113632

RESUMO

Bacopaside I (BSI) is a natural compound that is difficult to absorb orally but has been shown to have antidepressant effects. The microbiota-gut-brain axis is involved in the development of depression through the peripheral nervous system, endocrine system, and immune system and may be a key factor in the effect of BSI. Therefore, this study aimed to investigate the potential mechanism of BSI in the treatment of depression via the microbiota-gut-brain axis and to validate it in a fecal microbiota transplantation model. The antidepressant effect of BSI was established in CUMS-induced mice using behavioral tests and measurement of changes in hypothalamicpituitaryadrenal (HPA) axis-related hormones. The improvement of stress-induced gut-brain axis damage by BSI was observed by histopathological sections and enzyme-linked immunosorbent assay (ELISA). 16 S rDNA sequencing analysis indicated that BSI could modulate the abundance of gut microbiota and increase the abundance of probiotic bacteria. We also observed an increase in short-chain fatty acids, particularly acetic acid. In addition, BSI could modulate the disruption of lipid metabolism induced by CUMS. Fecal microbiota transplantation further confirmed that disruption of the microbiota-gut-brain axis is closely associated with the development of depression, and that the microbiota regulated by BSI exerts a partial antidepressant effect. In conclusion, BSI exerts antidepressant effects by remodeling gut microbiota, specifically through the Lactobacillus and Streptococcus-acetic acid-neurotrophin signaling pathways. Furthermore, BSI can repair damage to the gut-brain axis, regulate HPA axis dysfunction, and maintain immune homeostasis.


Assuntos
Microbioma Gastrointestinal , Camundongos , Animais , Depressão/metabolismo , Sistema Hipotálamo-Hipofisário , Sistema Hipófise-Suprarrenal , Antidepressivos/farmacologia , Antidepressivos/uso terapêutico , Acetatos/farmacologia , Estresse Psicológico/metabolismo
2.
J Cell Mol Med ; 28(3): e18058, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38098246

RESUMO

Ionizing radiation (IR)-induced intestinal injury is usually accompanied by high lethality. Intestinal stem cells (ISCs) are critical and responsible for the regeneration of the damaged intestine. Astragalus polysaccharide (APS), one of the main active ingredients of Astragalus membranaceus (AM), has a variety of biological functions. This study was aimed to investigate the potential effects of APS on IR-induced intestine injury via promoting the regeneration of ISCs. We have established models of IR-induced intestinal injury and our results showed that APS played great radioprotective effects on the intestine. APS improved the survival rate of irradiated mice, reversed the radiation damage of intestinal tissue, increased the survival rate of intestinal crypts, the number of ISCs and the expression of intestinal tight junction-related proteins after IR. Moreover, APS promoted the cell viability while inhibited the apoptosis of MODE-K. Through organoid experiments, we found that APS promoted the regeneration of ISCs. Remarkably, the results of network pharmacology, RNA sequencing and RT-PCR assays showed that APS significantly upregulated the HIF-1 signalling pathway, and HIF-1 inhibitor destroyed the radioprotection of APS. Our findings suggested that APS promotes the regeneration of ISCs through HIF-1 signalling pathway, and it may be an effective radioprotective agent for IR-induced intestinal injury.


Assuntos
Astrágalo , Transdução de Sinais , Camundongos , Animais , Polissacarídeos/farmacologia , Intestinos , Células-Tronco
3.
RSC Adv ; 13(51): 36181-36187, 2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38090064

RESUMO

In this study, we prepared porous Au-Ag alloy nanoparticle arrays with hydrophobic surfaces through the polystyrene colloidal crystal template combined with the chemical etching method to realize rapid SERS detection for biochemical molecules. In the preparation process, the pore size of Au-Ag alloy nanoparticles could be adjusted by changing the deposition time of the Ag element. Furthermore, after depositing the Au film on the surface of the porous nanoparticle arrays, their surface changed from hydrophilic to hydrophobic. The hydrophobic surface can drive target molecules to locally aggregate. Meanwhile, the hydrophobic surface also possessed a large number of active "hot spots" due to the porous structure. For these reasons, the porous Au-Ag alloy nanoparticle arrays can enable rapid and trace SERS detection, which provide the material basis for the subsequent construction of the high-quality SERS substrate.

4.
Int J Mol Sci ; 24(21)2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37958798

RESUMO

Tetragonia tetragonoides (Pall.) Kuntze (Aizoaceae, 2n = 2x = 32), a vegetable used for both food and medicine, is a halophyte that is widely distributed in the coastal areas of the tropics and subtropics. Saline-alkaline soils and drought stress are two major abiotic stressors that significantly affect the distribution of tropical coastal plants. Abscisic acid-, stress-, and ripening-induced (ASR) proteins belong to a family of plant-specific, small, and hydrophilic proteins with important roles in plant development, growth, and abiotic stress responses. Here, we characterized the ASR gene family from T. tetragonoides, which contained 13 paralogous genes, and divided TtASRs into two subfamilies based on the phylogenetic tree. The TtASR genes were located on two chromosomes, and segmental duplication events were illustrated as the main duplication method. Additionally, the expression levels of TtASRs were induced by multiple abiotic stressors, indicating that this gene family could participate widely in the response to stress. Furthermore, several TtASR genes were cloned and functionally identified using a yeast expression system. Our results indicate that TtASRs play important roles in T. tetragonoides' responses to saline-alkaline soils and drought stress. These findings not only increase our understanding of the role ASRs play in mediating halophyte adaptation to extreme environments but also improve our knowledge of plant ASR protein evolution.


Assuntos
Ácido Abscísico , Aizoaceae , Ácido Abscísico/metabolismo , Secas , Filogenia , Regulação da Expressão Gênica de Plantas , Estresse Fisiológico/genética , Plantas Tolerantes a Sal/genética , Plantas Tolerantes a Sal/metabolismo , Solução Salina , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Solo
5.
Front Pharmacol ; 14: 1178724, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37601071

RESUMO

Leukopenia caused by radiation hinders the continuous treatment of cancers. Danggui Buxue Decoction (DBD) has been widely used in clinical owing to low toxicity and definite therapeutic effects to increase leukocytes. Meanwhile, icaritin (ICT) has also been proved to have the effect of boosting peripheral blood cells proliferation. However, there is no study to prove the efficacy of MDBD (Modified Danggui Buxue Decoction), a derivative herbal formula composed of DBD and ICT, in the treatment of radiation-induced leukopenia. In this study, we performed a model of 3.5 Gy whole-body radiation to induce leukopenia in mice. The results of pharmacodynamic studies demonstrated that MDBD could significantly increase the white blood cells in peripheral blood by improving the activity of bone marrow nuclear cells, reducing bone marrow damage, modulating spleen index, and regulating hematopoietic factors to alleviate leukopenia. We also analyzed the integrated results of metabolomics and transcriptomics and found that MDBD could relieve leukopenia and alleviate bone marrow damage by targeting steroid biosynthesis and IL-17 signaling pathway, in which the key genes are Jun, Cxcl2 and Egr1. Therefore, our study provides a basis for the effectiveness and compatibility in the combination of traditional Chinese medicine formula and small molecule drugs.

6.
Sensors (Basel) ; 23(13)2023 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-37447886

RESUMO

This paper proposes a speech recognition method based on a domain-specific language speech network (DSL-Net) and a confidence decision network (CD-Net). The method involves automatically training a domain-specific dataset, using pre-trained model parameters for migration learning, and obtaining a domain-specific speech model. Importance sampling weights were set for the trained domain-specific speech model, which was then integrated with the trained speech model from the benchmark dataset. This integration automatically expands the lexical content of the model to accommodate the input speech based on the lexicon and language model. The adaptation attempts to address the issue of out-of-vocabulary words that are likely to arise in most realistic scenarios and utilizes external knowledge sources to extend the existing language model. By doing so, the approach enhances the adaptability of the language model in new domains or scenarios and improves the prediction accuracy of the model. For domain-specific vocabulary recognition, a deep fully convolutional neural network (DFCNN) and a candidate temporal classification (CTC)-based approach were employed to achieve effective recognition of domain-specific vocabulary. Furthermore, a confidence-based classifier was added to enhance the accuracy and robustness of the overall approach. In the experiments, the method was tested on a proprietary domain audio dataset and compared with an automatic speech recognition (ASR) system trained on a large-scale dataset. Based on experimental verification, the model achieved an accuracy improvement from 82% to 91% in the medical domain. The inclusion of domain-specific datasets resulted in a 5% to 7% enhancement over the baseline, while the introduction of model confidence further improved the baseline by 3% to 5%. These findings demonstrate the significance of incorporating domain-specific datasets and model confidence in advancing speech recognition technology.


Assuntos
Modelos Teóricos , Redes Neurais de Computação , Interface para o Reconhecimento da Fala , Fala , Percepção da Fala , Conjuntos de Dados como Assunto , Espectrografia do Som
7.
Phytother Res ; 37(10): 4557-4571, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37427974

RESUMO

Cryptotanshinone (CPT), a major biological active ingredient extracted from root of Salvia miltiorrhiza (Danshen), has shown several pharmacological activities. However, the effect of CPT on radiation-induced lung fibrosis (RILF) is unknown. In this study, we explored the protective effects of CPT on RILF from gut-lung axis angle, specifically focusing on the bile acid (BA)-gut microbiota axis. We found that CPT could inhibit the process of epithelial mesenchymal transformation (EMT) and suppress inflammation to reduce the deposition of extracellular matrix in lung fibrosis in mice induced by radiation. In addition, 16S rDNA gene sequencing and BAs-targeted metabolomics analysis demonstrated that CPT could improve the dysbiosis of gut microbiota and BA metabolites in RILF mice. CPT significantly enriched the proportion of the beneficial genera Enterorhabdus and Akkermansia, and depleted that of Erysipelatoclostridium, which were correlated with increased intestinal levels of several farnesoid X receptor (FXR) natural agonists, such as deoxycholic acid and lithocholic acid, activating the FXR pathway. Taken together, these results suggested that CPT can regulate radiation-induced disruption of gut microbiota and BAs metabolism of mice, and reduce the radiation-induced lung inflammation and fibrosis. Thus, CPT may be a promising drug candidate for treating RILF.

8.
BMC Infect Dis ; 23(1): 472, 2023 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-37461013

RESUMO

BACKGROUND: Patients with malignancy are at a higher risk of developing nosocomial infections. However, limited studies investigated the clinical features and prognostic factors of nosocomial infections due to fungi in cancer patients. Herein, this study aims to investigate the clinical characteristics of in-hospital fungal infections and develop a nomogram to predict the risk of in-hospital death during fungal infection of hospitalized cancer patients. METHODS: This retrospective observational study enrolled cancer patients who experienced in-hospital fungal infections between September 2013 and September 2021. Univariate and multivariate logistic regression analyses were performed to identify independent predictors of in-hospital mortality. Variables demonstrating significant statistical differences in the multivariate analysis were utilized to construct a nomogram for personalized prediction of in-hospital death risk associated with nosocomial fungal infections. The predictive performance of the nomogram was evaluated using receiver operating characteristic (ROC) curves, calibration curves, and decision curve analysis. RESULTS: A total of 216 participants were included in the study, of which 57 experienced in-hospital death. C.albicans was identified as the most prevalent fungal species (68.0%). Respiratory infection accounted for the highest proportion of fungal infections (59.0%), followed by intra-abdominal infection (8.8%). The multivariate regression analysis revealed that Eastern Cooperative Oncology Group Performance Status (ECOG-PS) 3-4 (odds ratio [OR] = 6.08, 95% confidence interval [CI]: 2.04-18.12), pulmonary metastases (OR = 2.76, 95%CI: 1.11-6.85), thrombocytopenia (OR = 2.58, 95%CI: 1.21-5.47), hypoalbuminemia (OR = 2.44, 95%CI: 1.22-4.90), and mechanical ventilation (OR = 2.64, 95%CI: 1.03-6.73) were independent risk factors of in-hospital death. A nomogram based on the identified risk factors was developed to predict the individual probability of in-hospital mortality. The nomogram demonstrated satisfactory performance in terms of classification ability (area under the curve [AUC]: 0.759), calibration ability, and net clinical benefit. CONCLUSIONS: Fungi-related nosocomial infections are prevalent among cancer patients and are associated with poor prognosis. The constructed nomogram provides an invaluable tool for oncologists, enabling them to make timely and informed clinical decisions that offer substantial net clinical benefit to patients.


Assuntos
Infecção Hospitalar , Neoplasias Pulmonares , Humanos , Mortalidade Hospitalar , Nomogramas , Estudos Retrospectivos , Prognóstico
9.
Stem Cell Res Ther ; 14(1): 158, 2023 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-37287081

RESUMO

BACKGROUND: Cardiomyocytes derived from pluripotent stem cells (PSC-CMs) have been widely accepted as a promising cell source for cardiac drug screening and heart regeneration therapies. However, unlike adult cardiomyocytes, the underdeveloped structure, the immature electrophysiological properties and metabolic phenotype of PSC-CMs limit their application. This project aimed to study the role of the transient receptor potential ankyrin 1 (TRPA1) channel in regulating the maturation of embryonic stem cell-derived cardiomyocytes (ESC-CMs). METHODS: The activity and expression of TRPA1 in ESC-CMs were modulated by pharmacological or molecular approaches. Knockdown or overexpression of genes was done by infection of cells with adenoviral vectors carrying the gene of interest as a gene delivery tool. Immunostaining followed by confocal microscopy was used to reveal cellular structure such as sarcomere. Staining of mitochondria was performed by MitoTracker staining followed by confocal microscopy. Calcium imaging was performed by fluo-4 staining followed by confocal microscopy. Electrophysiological measurement was performed by whole-cell patch clamping. Gene expression was measured at mRNA level by qPCR and at protein level by Western blot. Oxygen consumption rates were measured by a Seahorse Analyzer. RESULTS: TRPA1 was found to positively regulate the maturation of CMs. TRPA1 knockdown caused nascent cell structure, impaired Ca2+ handling and electrophysiological properties, and reduced metabolic capacity in ESC-CMs. The immaturity of ESC-CMs induced by TRPA1 knockdown was accompanied by reduced mitochondrial biogenesis and fusion. Mechanistically, we found that peroxisome proliferator-activated receptor gamma coactivator-1α (PGC-1α), the key transcriptional coactivator related to mitochondrial biogenesis and metabolism, was downregulated by TRPA1 knockdown. Interestingly, overexpression of PGC-1α ameliorated the halted maturation induced by TRPA1 knockdown. Notably, phosphorylated p38 MAPK was upregulated, while MAPK phosphatase-1 (MKP-1), a calcium-sensitive MAPK inhibitor, was downregulated in TRPA1 knockdown cells, suggesting that TRPA1 may regulate the maturation of ESC-CMs through MKP-1-p38 MAPK-PGC-1α pathway. CONCLUSIONS: Taken together, our study reveals the novel function of TRPA1 in promoting the maturation of CMs. As multiple stimuli have been known to activate TRPA1, and TRPA1-specific activators are also available, this study provides a novel and straightforward strategy for improving the maturation of PSC-CMs by activating TRPA1. Since a major limitation for the successful application of PSC-CMs for research and medicine lies in their immature phenotypes, the present study takes a big step closer to the practical use of PSC-CMs.


Assuntos
Miócitos Cardíacos , Biogênese de Organelas , Miócitos Cardíacos/metabolismo , Cálcio/metabolismo , Células-Tronco Embrionárias/metabolismo , Inibidores Enzimáticos/farmacologia , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Diferenciação Celular
10.
Aging (Albany NY) ; 15(12): 5854-5872, 2023 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-37367945

RESUMO

Heterochronic parabiosis has shown that aging individuals can be rejuvenated by a youthful circulatory system; however, the underlying mechanisms remain unclear. Here, we evaluated the effect of exosomes isolated from mouse induced pluripotent stem cells (iPSCs) on angiogenesis in naturally aged mice. To achieve this, the angiogenic capacity of aortic ring, the total antioxidant capacity (TAOC), p53 and p16 expression levels of major organs, the proliferation of adherent bone marrow cells, and the function and content of serum exosomes in aged mice administered iPSC-derived exosomes were examined. Additionally, the effect of iPSC-derived exosomes on injured human umbilical vein endothelial cells (HUVECs) was assessed. The angiogenic capacity of aortic rings and clonality of bone marrow cells from young mice were significantly higher than those from aged mice; moreover, the organs of aged mice had a higher expression of aging genes and lower total TAOC. However, in vitro and in vivo experiments showed that the administration of iPSC-derived exosomes significantly improved these parameters in aged mice. The synergistic effect of both in vivo and in vitro treatments of aortic rings with iPSC-derived exosomes improved the angiogenic capacity of aortic rings from aged mice to levels similar to that of young mice. Compared with untreated aged mice, serum exosomal protein content and their promoted effect on endothelial cell proliferation and angiogenesis were significantly higher in untreated young mice and aged mice treated with iPSC-derived exosomes. Overall, these results showed that iPSC-derived exosomes may rejuvenate the body by anti-aging the vascular system.


Assuntos
Exossomos , Células-Tronco Pluripotentes Induzidas , MicroRNAs , Humanos , Camundongos , Animais , Células-Tronco Pluripotentes Induzidas/metabolismo , Exossomos/metabolismo , Neovascularização Fisiológica , Células Endoteliais da Veia Umbilical Humana/metabolismo , Fenômenos Fisiológicos Cardiovasculares , Proliferação de Células , MicroRNAs/metabolismo
11.
Biomed Pharmacother ; 163: 114862, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37167729

RESUMO

Chronic fatigue syndrome (CFS) is a debilitating disease with no symptomatic treatment. Astragalus polysaccharide (APS), a component derived from the traditional Chinese medicine A. membranaceus, has significant anti-fatigue activity. However, the mechanisms underlying the potential beneficial effects of APS on CFS remain poorly understood. A CFS model of 6-week-old C57BL/6 male mice was established using the multiple-factor method. These mice underwent examinations for behavior, oxidative stress and inflammatory indicators in brain and intestinal tissues, and ileum histomorphology. 16 S rDNA sequencing analysis indicated that APS regulated the abundance of gut microbiota and increased production of short chain fatty acids (SCFAs) and anti-inflammatory bacteria. In addition, APS reversed the abnormal expression of Nrf2, NF-κB, and their downstream factors in the brain-gut axis and alleviated the reduction in SCFAs in the cecal content caused by CFS. Further, APS modulated the changes in serum metabolic pathways induced by CFS. Finally, it was verified that butyrate exerted antioxidant and anti-inflammatory effects in neuronal cells. In conclusion, APS could increase the SCFAs content by regulating the gut microbiota, and SCFAs (especially butyrate) can further regulate the oxidative stress and inflammation in the brain, thus alleviating CFS. This study explored the efficacy and mechanism of APS for CFS from the perspective of gut-brain axis and provides a reference to further explore the efficacy of APS and the role of SCFAs in the central nervous system.


Assuntos
Síndrome de Fadiga Crônica , Microbioma Gastrointestinal , Masculino , Animais , Camundongos , Síndrome de Fadiga Crônica/tratamento farmacológico , Camundongos Endogâmicos C57BL , Anti-Inflamatórios/farmacologia , Ácidos Graxos Voláteis/metabolismo , Butiratos/farmacologia , Polissacarídeos/farmacologia , Polissacarídeos/uso terapêutico
12.
Plant Physiol Biochem ; 200: 107786, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37257408

RESUMO

Cysteine-rich transmembrane module (CYSTM) proteins constitute small molecular protein families and have been identified across eukaryotes, including yeast, humans, and several plant species. Plant CYSTMs play vital roles in growth regulation, development, phytohormone signal transduction, pathogen defense, environmental stress response, and even heavy metal binding and detoxification. Canavalia rosea (Sw.) DC is a perennial halophyte with great semi-arid and saline-alkali tolerance. In this study, the CrCYSTM family including 10 members were identified in the C. rosea genome, with the purpose of clarifying the possible roles of CrCYSTMs in C. rosea plants development and stress resistance. The phylogenetic relationships, exon-intron structure, domain structure, chromosomal localization, and putative cis-acting elements in promoter regions were predicted and analyzed. Transcriptome analysis combined with quantitative reverse transcription PCR showed that different CrCYSTM members exhibited varied expression patterns in different tissues and under different abiotic stress challenges. In addition, several CrCYSTMs were cloned and functionally characterized for their roles in abiotic stress tolerance with yeast expression system. Overall, these findings provide a foundation for functionally characterizing plant CYSTMs to unravel their possible roles in the adaptation of C. rosea to tropical coral reefs. Our results also lay the foundation for further research on the roles of plant CYSTM genes in abiotic stress signaling, especially for heavy metal detoxification.


Assuntos
Canavalia , Cisteína , Humanos , Cisteína/metabolismo , Canavalia/genética , Canavalia/metabolismo , Saccharomyces cerevisiae/metabolismo , Filogenia , Estresse Fisiológico/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas , Família Multigênica
13.
Zhongguo Zhong Yao Za Zhi ; 48(6): 1463-1482, 2023 Mar.
Artigo em Chinês | MEDLINE | ID: mdl-37005834

RESUMO

Dolomiaea plants are perennial herbs in the Asteraceae family with a long medicinal history. They are rich in chemical constituents, mainly including sesquiterpenes, phenylpropanoids, triterpenes, and steroids. The extracts and chemical constituents of Dolomiaea plants have various pharmacological effects, such as anti-inflammatory, antibacterial, antitumor, anti-gastric ulcer, hepatoprotective and choleretic effects. However, there are few reports on Dolomiaea plants. This study systematically reviewed the research progress on the chemical constituents and pharmacological effects of Dolomiaea plants to provide references for the further development and research of Dolomiaea plants.


Assuntos
Asteraceae , Sesquiterpenos , Triterpenos , Extratos Vegetais/farmacologia , Sesquiterpenos/farmacologia , Anti-Inflamatórios , Compostos Fitoquímicos/farmacologia
14.
Talanta ; 259: 124502, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37027935

RESUMO

Ag dendrites have recently been widely reported due to their excellent surface-enhanced Raman scattering (SERS) properties. However, prepared pristine Ag dendrites are usually contaminated by organic impurities, which has a huge negative impact on their Raman detection and greatly limits their practical applications. In this paper, we reported a facile strategy to obtain clean Ag dendrites by high temperature decomposition of organic impurities. With the assistance of ultra-thin coating via atomic layer deposition (ALD), the nanostructure of Ag dendrites can be retained at high temperature. SERS activity can be recovered after etching ALD coating. Chemical composition tests indicate that the organic impurities can be effectively removed. As a result, the clean Ag dendrites can obtain more clearly discernible Raman peaks and lower limits of detection than the pristine Ag dendrites. Furthermore, it was demonstrated that this strategy is also applicable to clean other substrates, such as gold nanoparticles. Therefore, high temperature annealing with the help of ALD sacrifice coating is a promising and non-destructive strategy to clean the SERS substrates.

15.
Int J Psychophysiol ; 183: 41-52, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36400129

RESUMO

Previous studies found that the reward effect is stronger in more difficult retrieval tasks of item memory. However, it remains unclear whether the effect of reward is influenced by the memory task difficulty level in the source memory. We investigated the effects and neural mechanisms of the processing depth during encoding and rewards at retrieval on the item and source memory using event-related potentials (ERPs). Participants were required to carry out the congruity-judgment (deep processing) and size-judgment (shallow processing) tasks during encoding, and they completed separate object and background tests (half presented with reward) immediately after encoding. The results revealed that congruity-judgment (compare to size-judgment) task had longer response time in encoding phase, and evoked significantly greater reward differences at Prs (the hit rate minus the false alarm rate) in item retrieval, and the reward (relative to no reward) significantly improved recognition accuracy in source retrieval. ERP results also showed that congruity-judgment (compare to size-judgment) task evoked the larger N170, P3a, LPP and a decreased P3b of the stimuli in encoding phase, and elicited the wider distribution of LPC and LPN reward effects (i.e., the average amplitudes under the reward condition were significantly more positive than under the non-reward condition) in item retrieval, and the reward effects at FN400, LPC, and LPN were found only in the congruity-judged items with optimal difficulty in source retrieval. The results suggest that reward at retrieval evoked a greater boost in the congruity-judged stimuli, whether in item or source retrieval, which maybe be related to their optimal retrieval difficulty (Pr is closer to medium 0.50). This meant that the reward is more effective in memory retrieval with optimal difficulty.


Assuntos
Eletroencefalografia , Memória Episódica , Humanos , Eletroencefalografia/métodos , Reconhecimento Psicológico/fisiologia , Memória/fisiologia , Potenciais Evocados/fisiologia , Tempo de Reação/fisiologia , Rememoração Mental/fisiologia
16.
Int J Mol Sci ; 23(24)2022 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-36555252

RESUMO

Rett syndrome (RTT) is a severe neurodevelopmental disorder caused by MeCP2 mutations. Nonetheless, the pathophysiological roles of MeCP2 mutations in the etiology of intrinsic cardiac abnormality and sudden death remain unclear. In this study, we performed a detailed functional studies (calcium and electrophysiological analysis) and RNA-sequencing-based transcriptome analysis of a pair of isogenic RTT female patient-specific induced pluripotent stem-cell-derived cardiomyocytes (iPSC-CMs) that expressed either MeCP2wildtype or MeCP2mutant allele and iPSC-CMs from a non-affected female control. The observations were further confirmed by additional experiments, including Wnt signaling inhibitor treatment, siRNA-based gene silencing, and ion channel blockade. Compared with MeCP2wildtype and control iPSC-CMs, MeCP2mutant iPSC-CMs exhibited prolonged action potential and increased frequency of spontaneous early after polarization. RNA sequencing analysis revealed up-regulation of various Wnt family genes in MeCP2mutant iPSC-CMs. Treatment of MeCP2mutant iPSC-CMs with a Wnt inhibitor XAV939 significantly decreased the ß-catenin protein level and CACN1AC expression and ameliorated their abnormal electrophysiological properties. In summary, our data provide novel insight into the contribution of activation of the Wnt/ß-catenin signaling cascade to the cardiac abnormalities associated with MeCP2 mutations in RTT.


Assuntos
Células-Tronco Pluripotentes Induzidas , Síndrome de Rett , Humanos , Feminino , Síndrome de Rett/metabolismo , Via de Sinalização Wnt , Miócitos Cardíacos/metabolismo , Linhagem Celular , Proteína 2 de Ligação a Metil-CpG/genética , Proteína 2 de Ligação a Metil-CpG/metabolismo , Mutação
17.
Nat Commun ; 13(1): 7807, 2022 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-36528683

RESUMO

Concentrating a trace amount of molecules from liquids, solid objects, or the gas phase and delivering them to a localized area are crucial for almost any trace analyte detection device. Analytes within a liquid droplet resting on micro/nanostructured surfaces with liquid-repellent coatings can be concentrated during solvent evaporation. However, these coatings suffer from complex manufacturing procedures, poor versatility, and limited analyte enrichment efficiency. Here, we report on the use of an acoustic levitation platform to losslessly concentrate the analyte molecules dissolved in any volatile liquid, attached to solid objects, or spread in air. Gold nanoparticles can be simultaneously concentrated with the analytes in different phases, realizing sensitive, surface-enhanced Raman scattering detection even at attomolar (10-18 mol/L) concentration levels. The acoustic levitation platform-enabled, lossless analyte enrichment can significantly increase the analytical performance of many conventional microsensing techniques.


Assuntos
Nanopartículas Metálicas , Nanoestruturas , Ouro , Análise Espectral Raman/métodos , Solventes
18.
Ecotoxicol Environ Saf ; 248: 114341, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36442401

RESUMO

Radiation-induced intestinal damage (RIID) is a serious disease with limited effective treatment. Nuclear explosion, nuclear release, nuclear application and especially radiation therapy are all highly likely to cause radioactive intestinal damage. The intestinal microecology is an organic whole with a symbiotic relationship formed by the interaction between a relatively stable microbial community living in the intestinal tract and the host. Imbalance and disorders of intestinal microecology are related to the occurrence and development of multiple systemic diseases, especially intestinal diseases. Increasing evidence indicates that the gut microbiota and its metabolites play an important role in the pathogenesis and prevention of RIID. Radiation leads to gut microbiota imbalance, including a decrease in the number of beneficial bacteria and an increase in the number of harmful bacteria that cause RIID. In this review, we describe the pathological mechanisms of RIID, the changes in intestinal microbiota, the metabolites induced by radiation, and their mechanism in RIID. Finally, the mechanisms of various methods for regulating the microbiota in the treatment of RIID are summarized.


Assuntos
Microbioma Gastrointestinal , Microbiota , Intestinos
19.
Front Psychol ; 13: 935007, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36211892

RESUMO

Previous studies have found differences in the cognitive and neural mechanisms between cognitive reappraisal and expression suppression in the regulation of various negative emotions and the recognition of regulated stimuli. However, whether these differences are valid for sadness remains unclear. As such, we investigated the effect of cognitive reappraisal and expression suppression on sadness regulation and the recognition of sad scenes adopting event-related potentials (ERPs). Twenty-eight healthy undergraduate and graduate students took part in this study. In the regulation phase, the participants were asked to down-regulation, expressive suppression, or maintain their sad emotion evoked by the sad images, and then to perform an immediately unexpected recognition task involving the regulated images. The behavioral results show that down-regulation reappraisal significantly diminished subjective feelings of sadness, but expressive suppression did not; both strategies impaired the participants' recognition of sad images, and expressive suppression had a greater damaging effect on the recognition of sad images than down-regulation reappraisal. The ERP results indicate that reappraisal (from 300 ms to 1,500 ms after image onset) and expressive suppression (during 300-600 ms) significantly reduced the late positive potential (LPP) induced by sadness. These findings suggest that down-regulation reappraisal and expression suppression can effectively decrease sadness, and that down-regulation reappraisal (relative to expression suppression) is a more effective regulation strategy for sadness. Both strategies impair the recognition of sad scenes, and expression suppression (compared to down-regulation reappraisal) leads to relatively greater impairment in the recognition of sad scenes.

20.
Entropy (Basel) ; 24(7)2022 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-35885135

RESUMO

In this article, a mixed finite element method for thermally coupled, stationary incompressible MHD problems with physical parameters dependent on temperature in the Lipschitz domain is considered. Due to the variable coefficients of the MHD model, the nonlinearity of the system is increased. A stationary discrete scheme based on the coefficients dependent temperature is proposed, in which the magnetic equation is approximated by Nédélec edge elements, and the thermal and Navier-Stokes equations are approximated by the mixed finite elements. We rigorously establish the optimal error estimates for velocity, pressure, temperature, magnetic induction and Lagrange multiplier with the hypothesis of a low regularity for the exact solution. Finally, a numerical experiment is provided to illustrate the performance and convergence rates of our numerical scheme.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...